Accelerated deterioration method of cement-treated soil under seawater

DOI: 10.1680/jgere.24.00058 Publication Date: 2025-03-07T05:34:24Z
ABSTRACT
In seawater, cement-treated soil undergoes accelerated deterioration owing to enhanced calcium leaching caused by magnesium salts. The deterioration of cement-treated soil progresses gradually from the surface in contact with seawater, necessitating extended periods for investigating the soil properties after deterioration in laboratory tests. However, an accelerated deterioration method for cement-treated soil has not been developed. This study examines the effects of Mg concentration in the immersion water (0.94–23.45 g/l) and specimen dimensions (2.0–5.0 cm in diameter) on the deterioration rate. The aim is to accelerate the production of deteriorated cement-treated soil and characterise soil properties in a short period. The results indicated that the deterioration rate of the cement-treated soil increased with increasing Mg concentration in the immersion water, and the Mg concentration of 23.45 g/l was more than five times faster than that of 0.94 g/l. Furthermore, the smaller the specimen size, the shorter the period required for deterioration. The strength of the deteriorated cement-treated soil varied depending on the size of the specimen; however, the difference was within 16% based on a diameter of 5.0 cm.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (40)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....