characterization of reaction intermediates of human excision repair nuclease
0301 basic medicine
0303 health sciences
Base Sequence
DNA Repair
Molecular Sequence Data
SUMO-1 Protein
DNA, Recombinant
Endonucleases
Substrate Specificity
03 medical and health sciences
Humans
Nucleic Acid Conformation
Ubiquitins
DOI:
10.17615/n00n-sb15
Publication Date:
1997-11-01
AUTHORS (4)
ABSTRACT
Nucleotide excision repair in humans is a complex reaction involving 14 polypeptides in six repair factors for dual incisions on either sides of a DNA lesion. To identify the reaction intermediates that form by the human excision repair nuclease, we adopted three approaches: purification of functional DNA.protein complexes, permanganate footprinting, and the employment as substrate of presumptive DNA reaction intermediates containing unwound sequences 5' to, 3' to, or encompassing the DNA lesion. The first detectable reaction intermediate was formed by substrate binding of XPA, RPA, XPC.HHR23B plus TFIIH (preincision complex 1, PIC1). In this complex the DNA was unwound on either side of the lesion by no more than 10 bases. Independent of the XPG nuclease function, the XPG protein stabilized this complex, forming a long lived preincision complex 2 (PIC2). The XPF.ERCC1 complex bound to PIC2, forming PIC3, which led to dual incisions and the release of the excised oligomer. With partially unwound DNAs, thymine cyclobutane dimer was excised at a fast rate independent of XPC.HHR23B, indicating that a major function of this protein is to stabilize the unwound DNA or to aid lesion unwinding in preincision complexes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES ()
CITATIONS ()
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....