Learning to Extract Structured Entities Using Language Models

FOS: Computer and information sciences Computer Science - Machine Learning Computer Science - Computation and Language Computation and Language (cs.CL) Machine Learning (cs.LG)
DOI: 10.18653/v1/2024.emnlp-main.388 Publication Date: 2024-11-27T22:28:12Z
ABSTRACT
18 pages, 11 figures<br/>Recent advances in machine learning have significantly impacted the field of information extraction, with Language Models (LMs) playing a pivotal role in extracting structured information from unstructured text. Prior works typically represent information extraction as triplet-centric and use classical metrics such as precision and recall for evaluation. We reformulate the task to be entity-centric, enabling the use of diverse metrics that can provide more insights from various perspectives. We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP (AESOP) metric, designed to appropriately assess model performance. Later, we introduce a new Multistage Structured Entity Extraction (MuSEE) model that harnesses the power of LMs for enhanced effectiveness and efficiency by decomposing the extraction task into multiple stages. Quantitative and human side-by-side evaluations confirm that our model outperforms baselines, offering promising directions for future advancements in structured entity extraction. Our source code and datasets are available at https://github.com/microsoft/Structured-Entity-Extraction.<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....