Pt quantum dots coupled with NiFe LDH nanosheets for efficient hydrogen evolution reaction at industrial current densities
DOI:
10.20517/microstructures.2024.76
Publication Date:
2025-02-27T09:33:58Z
AUTHORS (18)
ABSTRACT
Developing efficient and economical electrocatalysts for hydrogen generation at high current densities is crucial advancing energy sustainability. Herein, a self-supported evolution reaction (HER) electrocatalyst rationally designed prepared on nickel foam through simple two-step chemical etching method, which consists of Pt quantum dots (PtQDs) coupled with nickel-iron layered double hydroxide (NiFe LDH) nanosheets (named PtQDs@NiFe LDH). The characterization results indicate that the introduction PtQDs induces more oxygen vacancies, thereby optimizing electronic structure LDH. This modification enhances conductivity accelerates adsorption/desorption kinetics intermediates in LDH, ultimately resulting exceptional catalytic performance HER large densities. Specifically, LDH delivers 500 2000 mA·cm-2 remarkably low overpotentials 92 252 mV, respectively, markedly outperforming commercial Pt/C (η500 = 190 η2000 436 mV). Moreover, when employing NiFe precursor catalyst as anode cathode, an overall water electrolysis system, only 1.66 V 2.02 are required to achieve mA·cm-2, while maintaining robust stability 200 h. study introduces feasible approach developing industrial-scale
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....