DiabeticSense: A Non-Invasive Multi-Sensor IoT-based System for Diabetes Detection Using Breath
DOI:
10.20944/preprints202308.1754.v1
Publication Date:
2023-08-29T03:09:42Z
AUTHORS (8)
ABSTRACT
Diabetes mellitus is a widespread chronic metabolic disorder demanding regular blood glucose level surveillance (BGLs). Current invasive techniques, such as finger-prick tests, often result in discomfort for patients, leading to infrequent monitoring and potential health complications. The primary objective of this study was to design a novel, portable, non-invasive system for diabetes detection using breath samples, named as DiabeticSense, an affordable digital health device for early detection, encouraging immediate intervention. The device employed MOSFET-based electrochemical sensors to assess volatile organic compounds in breath samples, whose concentrations differ between diabetic and non-diabetic individuals. The system merged body vital signs with sensor voltages obtained by processing breath sample data to predict diabetic conditions. Our research used readings from 100 patients at a nationally recognised hospital to form the dataset. Data was then processed 10 using a Gradient Boosting Classifier model, and performance was cross-validated. The proposed system attained a promising accuracy of 86.6%, marking an improvement of 20.72% over an existing regression technique. The developed device introduces a non-invasive, cost-effective, and user-friendly solution for preliminary diabetes detection. It has the potential to increase patient adherence to regular monitoring.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (1)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....