Grover Adaptive Search for Constrained Polynomial Binary Optimization
FOS: Computer and information sciences
Quantum Physics
Emerging Technologies (cs.ET)
Physics
QC1-999
0103 physical sciences
Computer Science - Emerging Technologies
FOS: Physical sciences
Quantum Physics (quant-ph)
01 natural sciences
DOI:
10.22331/q-2021-04-08-428
Publication Date:
2021-04-08T14:29:10Z
AUTHORS (3)
ABSTRACT
In this paper we discuss Grover Adaptive Search (GAS) for Constrained Polynomial Binary Optimization (CPBO) problems, and in particular, Quadratic Unconstrained Binary Optimization (QUBO) problems, as a special case. GAS can provide a quadratic speed-up for combinatorial optimization problems compared to brute force search. However, this requires the development of efficient oracles to represent problems and flag states that satisfy certain search criteria. In general, this can be achieved using quantum arithmetic, however, this is expensive in terms of Toffoli gates as well as required ancilla qubits, which can be prohibitive in the near-term. Within this work, we develop a way to construct efficient oracles to solve CPBO problems using GAS algorithms. We demonstrate this approach and the potential speed-up for the portfolio optimization problem, i.e. a QUBO, using simulation and experimental results obtained on real quantum hardware. However, our approach applies to higher-degree polynomial objective functions as well as constrained optimization problems.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (83)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....