Formes modulaires de Hilbert modulo $p$ et valeurs d'extensions entre caractères galoisiens
[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT]
Mathematics - Number Theory
11F80 (Primary) 22E50 (Secondary)
FOS: Mathematics
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Number Theory (math.NT)
0101 mathematics
01 natural sciences
[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
DOI:
10.24033/asens.2230
Publication Date:
2017-03-25T16:17:11Z
AUTHORS (2)
ABSTRACT
Let F be a totally real field, v an unramified place of F dividing p and rho a continuous irreducible two-dimensional mod p representation of G_F such that the restriction of rho to G_{F_v} is reducible and sufficiently generic. If rho is modular (and satisfies some weak technical assumptions), we show how to recover the corresponding extension between the two characters of G_{F_v} in terms of the action of GL_2(F_v) on the cohomology mod p.<br/>in French, to appear in Annales Scientifiques de l'Ecole Normale Superieure<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....