Formes modulaires de Hilbert modulo $p$ et valeurs d'extensions entre caractères galoisiens

[MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] Mathematics - Number Theory 11F80 (Primary) 22E50 (Secondary) FOS: Mathematics [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] Number Theory (math.NT) 0101 mathematics 01 natural sciences [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]
DOI: 10.24033/asens.2230 Publication Date: 2017-03-25T16:17:11Z
ABSTRACT
Let F be a totally real field, v an unramified place of F dividing p and rho a continuous irreducible two-dimensional mod p representation of G_F such that the restriction of rho to G_{F_v} is reducible and sufficiently generic. If rho is modular (and satisfies some weak technical assumptions), we show how to recover the corresponding extension between the two characters of G_{F_v} in terms of the action of GL_2(F_v) on the cohomology mod p.<br/>in French, to appear in Annales Scientifiques de l'Ecole Normale Superieure<br/>
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (22)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....