In Vivo Kinetic and Steady-State Quantification of 18F-CPFPX Binding to Rat Cerebral A1 Adenosine Receptors: Validation by Displacement and Autoradiographic Experiments

Male Receptor, Adenosine A1 Brain Reproducibility of Results Rats Rats, Sprague-Dawley Kinetics 03 medical and health sciences 0302 clinical medicine Xanthines Animals Autoradiography Protein Binding
DOI: 10.2967/jnumed.112.115576 Publication Date: 2013-06-06T04:49:36Z
ABSTRACT
In vivo imaging of the A1 adenosine receptor (A1AR) using (18)F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ((18)F-CPFPX) and PET has become an important tool for studying physiologic and pathologic states of the human brain. However, dedicated experimental settings for small-animal studies are still lacking. The aim of the present study was therefore to develop and evaluate suitable pharmacokinetic models for the quantification of the cerebral A1AR in high-resolution PET.On a dedicated animal PET scanner, 15 rats underwent (18)F-CPFPX PET scans of 120-min duration. In all animals, arterial blood samples were drawn and corrected for metabolites. The radioligand was injected either as a bolus or as a bolus plus constant infusion. For the definition of unspecific binding, the A1AR selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) was applied. After PET, the brains of 9 animals were dissected and in vitro saturation binding was performed using high-resolution (3)H-DPCPX autoradiography.The kinetics of (18)F-CPFPX were well described by either compartmental or noncompartmental models based on arterial input function. The resulting distribution volume ratio correlated with a low bias toward identity with the binding potential derived from a reference region (olfactory bulb) approach. Furthermore, PET quantification correlated significantly with autoradiographic in vitro data. Blockade of the A1AR with DPCPX identified specific binding of about 45% in the reference region olfactory bulb.The present study provides evidence that (18)F-CPFPX PET based on a reference tissue approach can be performed quantitatively in rodents in selected applications. Specific binding in the reference region needs careful consideration for quantitative investigations.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (14)
CITATIONS (14)