Chiral Thermally Activated Delayed Fluorescence-Active Macrocycles Displaying Efficient Circularly Polarized Electroluminescence
02 engineering and technology
0210 nano-technology
DOI:
10.31635/ccschem.021.202101509
Publication Date:
2021-12-20T15:52:10Z
AUTHORS (6)
ABSTRACT
Open AccessCCS ChemistryRESEARCH ARTICLE7 Nov 2022Chiral Thermally Activated Delayed Fluorescence-Active Macrocycles Displaying Efficient Circularly Polarized Electroluminescence Wen-Long Zhao, Yin-Feng Wang, Shi-Peng Wan, Hai-Yan Lu, Meng Li and Chuan-Feng Chen Zhao School of Chemical Sciences, University Chinese Academy Beijing 100049 National Laboratory for Molecular CAS Key Recognition Function, Institute Chemistry, 100190 , Wang Wan Lu *Corresponding authors: E-mail Address: [email protected] https://doi.org/10.31635/ccschem.021.202101509 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareFacebookTwitterLinked InEmail An efficient strategy constructing chiral macrocycles with both thermally activated delayed fluorescence (TADF) highly circularly polarized electroluminescence (CPEL) properties was developed. Consequently, a pair macrocyclic enantiomers (+)-(R,R)- MC (−)-(S,S)- synthesized by combination octahydro-binaphthol moiety triazine-based TADF skeleton. The exhibited obvious low ΔEST 0.067 eV, aggregation-induced emission behaviors, high photoluminescence quantum yields up 79.7%. Moreover, the showed mirror images in circular dichroism spectra luminescence signals. Especially, were suitable preparation solution-processed organic light-emitting diodes, which displayed excellent device performances maximum external efficiency 17.1%, low-efficiency roll-off 3.5% at 1000 cd m−2, intense CPEL along dissymmetry factor 1.7 × 10−3. Download figure PowerPoint Introduction Chiral macrocycles1 have drawn much attention last century their wide applications many research areas.2–7 Recently, (CPPL) been particular interest ambition researchers due potential design construction supramolecular materials8–11 optoelectronic materials.12–15 However, such CPPL are still limited.16 no properties17,18 reported so far, probably difficulties achievement generally efficiencies (EQEs) devices. Since (TADF)19,20 emitters could up-convert triplet exciton through reverse intersystem crossing (RISC) theoretically achieve an internal (IQE) 100%. They considered third generation diode (OLED) materials.21–23 In recent years, synthetic also attracted increasing unique structures specific photophysical (Figure 1a). 2018, Su Huang's group24 type sulfone-based deep-blue properties. Soon after, our group series oxacalixarenes based on triazine found that significant activities.25 2020, Minakata et al.26 π-conjugated macrocycle fabricated corresponding OLED EQE (EQEmax) 11.6%. This first example emitter property utilized More recently, Yasuda al.27 green property, realized EQEmax 15.7%. examples combinations limited, difficulty synthesis. simultaneous very attractive, they enrich materials, as well expand application chemistry; nevertheless, hitherto reported. exploring diodes (CP-OLEDs) remains challenge. Figure 1 | (a) (b) this work. Herein, we report macrocycles, namely 1b), ingeniously combined skeleton subunit. small evident (AIE) characteristics, (PLQYs) mirror-imaged (CD) signals (CPL) (|gPL|) 2.2 10−3 solution. CP-OLEDs 17.1% |gEL| work provides activities, it opens new gate CP-OLED Experimental Methods All reagents solvents used commercially available without further purification. 1H 13C NMR recorded AVIII 500 MHz spectrometer (Bruker, Beijing, China) CDCl3 High-resolution mass measured Thermo Fisher® Exactive high-resolution liquid chromatography spectrometry (LC-MS) (Beijing, China). calculation carried out Gaussian 09 software package ( https://gaussian.com/glossary/g09/). Geometry optimizations conducted under B3LYP/6-31G(d,p) level density functional theory (DFT). Crystal solved direct methods refined full-matrix least-squares technique, using SHELXS ftp://10.8.1.178/). UV–Vis PerkinElmer® UV/Vis/NIR (Lambda 950; China), HITACHI® F-7000 Fluorescence room temperature. transient decay temperature dependence experiments, absolute PLQY Edinburgh Instruments FLS1000 CD JASCO J810 spectropolarimeter CPL 200 nm min−1 scan speed commercialized instrument CPL-300 Results Discussion easily two-step reactions. As shown Scheme 1, utilizing commercial (R)-/(S)-octahydro-binaphthol cyanuric chloride starting CTC or precursor efficiently nucleophilic substitution reaction. Then, target obtained Suzuki coupling reaction (4-(9,9-dimethylacridin-10(9H)-yl)phenyl)borate ester. Structures confirmed NMR, spectroscopy Supporting Information Figures S25–S32), spectrometry, single-crystal X-ray diffraction analysis. Then enantiomeric purity determined high-performance analysis 99% excesses S1–S3 Table S1). Detailed experimental data described Information. Synthetic routes (−)-(S,S)/(+)-(R,R)-MC. order intuitively investigate structure attempted cultivate single crystals several times but failed. Thus, crystal rac- MC, via slow evaporation its solution mixture tetrahydrofuran acetonitrile. detailed summarized S2. 2a–2d, approximate hexagonal cavities observed structures, acceptors extended almost parallel same direction. large dihedral angle nearly 90° between 9,9-dimethyl-9,10-dihydroacridine (DMAC) unit acceptor, conducive separation highest occupied molecular orbital (HOMO) lowest unoccupied (LUMO). multiple C–H⋯π interactions hydrogen bonds packing cell containing MC. Besides, not only be source provided steric hindrance reduce annihilation aggregation state current density.28 2 rac-MC: top view side view. stacking rac-MC showing (c) (d) bond interactions. Next, HOMO–LUMO electronic distribution studied DFT calculations B3LYP 6-31G(d,p) basis (see S3 details). S6, LUMOs mainly located electron-withdrawing ability, while HOMOs distributed DMAC moieties. spatial HOMO LUMO essential obtaining ΔEST. Subsequently, singlet (S1) (T1) energy levels calculated 2.46 2.45 respectively, resulting 0.01 promoted RISC from T1 S1, activity. although indicated nonparticipation macrocycle, might induced units show activities. With hand, electrochemical investigated cyclic voltammetry S7–S8 S4). Based onset oxidation curve, estimated −5.38 eV Combined optical band gap (Eg) 2.72 absorption thin film 3a), −2.66 eV. Following this, thermal stabilities studied. stability decomposition (Td) 420 °C S4) glass transition (Tg) 306 S5). configurational necessary improving performance CP-OLEDs. 3 Absorption (−)-(S,S)-MC states temperature, phosphorescence neat 77 K. Transient PL curve doped (25 wt % (−)-(S,S)-MC: CBP) similar S9, S10, S16–S19), Tables S5 S7. example, spectrum strong centered 264 3a) assigned intramolecular π–π* transition. A broad weak about 370 apparent, attributed charge transfer (ICT) units. Additionally, 505 nm. Further, increase solvent polarity, change S11), remarkable redshift bands 512 (in toluene) 624 dimethylformamide) S12 S6), demonstrating ICT excited state. Meaningfully, AIE behaviors (THF)/H2O mixtures different water fractions (fw) S13). intensity enhanced dramatically continued fw (fw = 0% 99%). lifetimes gradually prolonged values S14), indicating macrocycle. Benefiting properties, 65.6% air 79.7% vacuum (Table 1). enhancement key feature activity S15). Physical Properties λabsa (nm) λFLb λFLc λPhosd ES1e (eV) ET1f ΔESTg (meV) ΦPLQYh (%) ΦPLQYi τPFj (ns) τDFj (μs) 510 2.691 2.624 67 65.6 79.7 42 12.9 aAbsorption bFluorescence peak cFluorescence peak, dPhosphorescence eS1 (≈1240/λ). fT1 gΔEST ES1 − ET1. hAbsolute yield air. iAbsolute vacuum. jτPF τDF MC: CBP). To verify 3a, S1 according 3a). fabricate efficiencies, 4,4′-dicarbazolyl-1,1′-biphenyl (CBP) selected host material. CBP had 2.6 sufficient block excitons within guest molecules.29,30 Similar film, value 0.068 Also, curves 3b). Two distinct visible prompt lifetime (τp) ns (τd) μs. short τd effectively suppressed triplet-triplet (TTA) singlet-triplet (STA) processes devices realize roll-off.31 chiroptical toluene solutions spectra. S8. 4a, Cotton effects wavelength region 300 absorption. long-wavelength 374 effect unit, successfully produce chirality ground mirror-image gPL +2.2 −2.2 (Figures 4a 4b), studied, films activities 4c). |gPL| 2.0 films, respectively 4d). 4 versus (+)-(R,R)/( −)-(S,S)-MC (c 10−4 M). (+)-(R,R)/(−)-(S,S)-MC enantiomers: Encouraged good solubility, PLQY, CPL, −)-(S,S)- CP-OLEDs.32,33 configuration optimized employing configurations A( R ) S follows: ITO/PEDOT:PSS (50 nm)/CBP:25 (+)-(R,R)/(−)-(S,S)- (40 nm)/TPBi nm)/LiF (1 nm)/Al (100 nm), details chemical adopted assistant materials 5a. devices' illustrated 5b 5c S21–S24, 2. Devices EL 522 Commission Internationale de l'Eclairage (CIE) coordinates (0.28, 0.54). turn-on voltage (VT) 3.5 V, (CEmax) 53.7 A−1, power (PEmax) 37.0 lm W−1, 17.1%. addition, significantly 16.5% 15.5% luminance 2000 respectively. Furthermore, opposing gEL +1.5 −1.7 ), achieved. result racemic barrier octahydro-binaphthol, endowing stable conformation. 5 Energy diagrams A(R) A(S). EQE-Luminance characteristics Inset: 6.8 V. function wavelength. R) S) Device Performances VTa (V) λELb Lmaxc (cd/m2) EQEd Max/1000/2000 CEmaxe (cd A−1) PEmaxf (lm W−1) Efficiency Roll-Offg 3.8 14920 17.1/16.5/15.5 3.5/9.4 12900 15.5/15.3/14.5 48.8 34.9 1.3/6.4 aTurn-on voltage. bElectroluminescence cMaximum luminance. dEQE maxima 1000, eMaximum efficiency. fMaximum gEfficiency Conclusion We developed conveniently short, 1.5 μs, prominent PLQYs TADF-active Notably, achieved 10−3, believe perspective develop avenue practical macrocycles. is includes supplemental details, S1–S32, S1–S8. Conflict Interest authors declare conflict interest. Funding supported Natural Science Foundation China (nos. 21971235, 91956119, 22122111, 92056109), Sciences (no. BNLMS-CXXM-202105), Youth Innovation Promotion Association 2019034). Preprint Statement Research presented article posted preprint server prior publication CCS Chemistry. can here: DOI: 10.31635/ccschem.021.202101509. References 1. Neri P.; Sessler J. L.; M.-X.Calixarenes Beyond; Springer: Switzerland, 2016. Google Scholar Z.; Q.; Wu X.; Jiang Y.-B.Optical Chirality Sensing Using Macrocycles, Supramolecular Oligomers/Polymers, Nanoparticle-Based Sensors.Chem. Soc. Rev.2015, 44, 4249–4263. 3. Yao J.; W.; Liang Feng Y.; Zhou D.; Chruma Fukuhara G.; Mori T.; Inoue Yang C.Temperature-Driven Planar Switching Pillar[5]arene-Based Universal Joint.Angew. Chem. Int. Ed.2017, 56, 6869–6873. 4. Lim Y. C.; Marques I.; Félix V.; Beer P. D.Enantioselective Anion Halogen-Bonding [2]Rotaxanes.J. Am. Soc.2017, 139, 12228–12239. 5. Guo H.; Zhang L.-W.; Ao Y.-F.; D.-X.; Q.-Q.Substrate-Induced Dimerization Assembly Macrocycle Catalysts toward Cooperative Asymmetric Catalysis.Angew. Ed.2020, 59, 2623–2627. 6. Nie S.-X.; Huang T.-Y.; Q.-Q.Xenon Binding Tight Yet Adaptive Soft Capsule.Nat. Commun.2020, 11, 6257. 7. Quan M.; Ke W.Biomimetic Optical Carboxylic Acids Water Buried Salt Bridge Hydrophobic Effect.Angew. Ed.2021, 60, 1929–1935. 8. David A. H. Casares R.; Cuerva Campaña Blanco V.A [2]Rotaxane-Based Luminescence Switch.J. Soc.2019, 141, 18064–18074. 9. Zhuang Jia Cui S.; Shao Du P.Selective Synthesis Conjugated Macrocycles: Sidewall Segments (−)/(+)-(12,4) Carbon Nanotubes Strong Luminescence.Angew. 1619–1626. 10. Yuan Y.-X.; Hu K.-R.; T.-T.; Liu Zheng Y.-S.The Largest Enhancement Further Self-Assembled Superhelices Helical TPE Macrocycle.Mater. Horiz.2020, 7, 3209–3216. 11. W.-J.; Gu X.-Q.; D.-Y.; Y.-T.; He H.-B.AIE-Active [3]Rotaxanes Switchable 9507–9515. 12. Qiao W.-G.; Xiong J.-B.; H.-C.; Y.-S.Chiroptical Property Triangular Crown Ethers Propeller-like Induced Acids.J. Mater. C2018, 6, 3427–3434. 13. W.-L.; H.-Y.; C.-F.Advances Helicene Derivatives Luminescence.Chem. Commun.2019, 55, 13793–13803. 14. Han X.-N.; C.-F.Pagoda[4]arene i-Pagoda[4]arene.J. Soc.2020, 142, 8262–8269. 15. C.-F.Saucer[n]arenes: Synthesis, Structure, Complexation, Guest-Induced Property.Angew. 21927–21933. 16. J.-F.; Yin B.; K.; Shi N.; P.Planar Organoboranes Thermoresponsive Emission Luminescence: Integration Pillar[5]arenes Boron Chemistry.Angew. 11267–11272. 17. D.-W.; C.-F.Recent Advances Organic Light-Emitting Diodes.Chem. Rev.2020, 49, 1331–1343. 18. Frédéric Desmarchelier A.; Favereau Pieters G.Designs Applications Molecules.Adv. Funct. Mater.2021, 31, 2010281. 19. Uoyama Goushi Shizu Nomura Adachi C.Highly Diodes Fluorescence.Nature2012, 492, 234–238. 20. Sandanayaka S. D.The Leap Semiconductor Laser Diodes.CCS Chem.2020, 2, 1203–1216. Abstract, 21. Mao Xie Xu Chi Aldredb M. P.Recent Materials.Chem. Rev.2017, 46, 915–1016. 22. S.-J.; Cai X.Marching Toward Highly Efficient, Pure-Blue, Stable Fluorescent Diodes.Adv. Mater.2018, 28, 1802558. 23. Tsai M.-H.; Lee W.-K.; Hsu Y.-J.; Pan K.-C.; Y.-H.; Ting Sarma Ho Y.-Y.; C.-C.; M.-T.; Wong K.-T.; C.-C.A Versatile Emitter Both Doped Non-Doped Light Emitting Devices.Chem. Commun.2015, 51, 13662–13665. 24. F.; Cao Y.One-Step Cyclic Compounds Towards Easy Room-Temperature Phosphorescence Deep Blue Fluorescence.Chem. Commun.2018, 54, 7850–7853. 25. Shen C.-F.Novel Oxacalix[2]arene[2]triazines Aggregation-Induced Properties.Chem. 9559–9562. 26. Izumi Higginbotham Nyga Stachelek Tohnai Silva Data Takeda S.Thermally Donor-Acceptor-Donor-Acceptor π-Conjugated Diodes.J. 1482–1491. 27. Shikita Watanabe Kanouchi Saito T.Alternating Donor–Acceptor Exhibiting Spontaneous Horizontal Orientation.Adv. Photon. Res.2021, 2100021. 28. Z.-G.; Yan Z.-P.; Luo X.-F.; W.-Q.; Zuo J.-L.; Y.Non-Doped High Octahydro-Binaphthyl Luminophores.J. C2019, 7045–7052. 29. Cheng Y.Circularly Binaphthyl-Based Luminogens.ACS Appl. Interfaces2019, 26165–26173. 30. Kuwabara Potscavage W. Hatae Shibata C.Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Design, Fluorescence, Red Electroluminescence.J. Soc.2014, 136, 18070–18081. 31. Wei Y.Molecular Engineering Emitters Concurrently Achieve Performance Reduced Roll-Off 9966–9974. 32. Ren Ma S.Highly White-Emitting Polymers: White OLEDs Electroluminescent Mechanism.Nano Energy2019, 65, 104057. 33. Kim Kang Jeong J.-E.; Park Koh C. Woo Cho Choi D. H.Ultra-Deep-Blue Emitters: Achieving Nearly 16% Solution-Processed Nondoped CIEy < 0.1.Adv. 2102588. Previous articleNext FiguresReferencesRelatedDetails Issue AssignmentVolume 4Issue 11Page: 3540-3548Supporting Copyright & Permissions© 2022 SocietyKeywordsorganic diodecircularly luminescencechiral macrocyclethermally Downloaded 2,079 PDF downloadLoading ...
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (69)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....