AI-Powered Decomposition Techniques for Economic Forecasting

DOI: 10.31703/gssr.2024(ix-iv).07 Publication Date: 2024-11-07T04:28:03Z
ABSTRACT
Time series analysis and decomposition are crucial in examining economic data as they uncover elements such as trends, and seasonal influences, within the data. However, some approaches have difficulty in accommodating complex, high-dimensional data. In this research, we investigate the possibilities of utilizing artificial intelligence (AI) tools, specifically, machine learning (ML) and deep learning (DL) for better timeliness and accuracy of economic forecasting. In some instances, it was shown how recent AI models can improve the data analysis of economic indicators (GDP, inflation, stock indices) through the accurate depiction of non-linear trends and changing seasonals. Model enhancements using AI also result in significant improvement in the accuracy of economic forecasts and provide more detailed and useful time series decomposition for economists and policymakers. This paper is a step towards more extensive use of artificial intelligence in econometric analysis and provides evidence on the feasibility of such in practical econometric studies.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....