A scATAC-seq atlas of stasis zone in rat skin burn injury wound process
stasis zone
Cell and Developmental Biology
chromatin accessibility
QH301-705.5
wound healing
Biology (General)
rat burn injuries
transcription factor
DOI:
10.3389/fcell.2024.1519926
Publication Date:
2025-01-07T06:44:17Z
AUTHORS (21)
ABSTRACT
Burn injuries often leave behind a “stasis zone”, a region of tissue critically important for determining both the severity of the injury and the potential for recovery. To understand the intricate cellular and epigenetic changes occurring within this critical zone, we utilized single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to profile over 31,500 cells from both healthy rat skin and the stasis zone at nine different time points after a burn injury. This comprehensive approach revealed 26 distinct cell types and the dynamic shifts in the proportions of these cell types over time. We observed distinct gene activation patterns in different cell types at various stages post-burn, highlighting key players in immune activation, tissue regeneration, and blood vessel repair. Importantly, our analysis uncovered the regulatory networks governing these genes, offering valuable insights into the intricate mechanisms orchestrating burn wound healing. This comprehensive cellular and molecular atlas of the stasis zone provides a powerful resource for developing targeted therapies aimed at improving burn injury recovery and minimizing long-term consequences.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (95)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....