Skin-lesion segmentation using boundary-aware segmentation network and classification based on a mixture of convolutional and transformer neural networks

DOI: 10.3389/fmed.2025.1524146 Publication Date: 2025-03-10T06:48:49Z
ABSTRACT
BackgroundSkin cancer is one of the most prevalent cancers worldwide. In the clinical domain, skin lesions such as melanoma detection are still a challenge due to occlusions, poor contrast, poor image quality, and similarities between skin lesions. Deep-/machine-learning methods are used for the early, accurate, and efficient detection of skin lesions. Therefore, we propose a boundary-aware segmentation network (BASNet) model comprising prediction and residual refinement modules.Materials and methodsThe prediction module works like a U-Net and is densely supervised by an encoder and decoder. A hybrid loss function is used, which has the potential to help in the clinical domain of dermatology. BASNet handles these challenges by providing robust outcomes, even in suboptimal imaging environments. This leads to accurate early diagnosis, improved treatment outcomes, and efficient clinical workflows. We further propose a compact convolutional transformer model (CCTM) based on convolution and transformers for classification. This was designed on a selected number of layers and hyperparameters having two convolutions, two transformers, 64 projection dimensions, tokenizer, position embedding, sequence pooling, MLP, 64 batch size, two heads, 0.1 stochastic depth, 0.001 learning rate, 0.0001 weight decay, and 100 epochs.ResultsThe CCTM model was evaluated on six skin-lesion datasets, namely MED-NODE, PH2, ISIC-2019, ISIC-2020, HAM10000, and DermNet datasets, achieving over 98% accuracy.ConclusionThe proposed model holds significant potential in the clinical domain. Its ability to combine local feature extraction and global context understanding makes it ideal for tasks like medical image analysis and disease diagnosis.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (56)
CITATIONS (0)