Latent space improved masked reconstruction model for human skeleton-based action recognition
self-supervised learning
masked reconstruction model
vector quantized variational autoencoder
variational autoencoder
Neurosciences. Biological psychiatry. Neuropsychiatry
human skeleton-based action recognition
RC321-571
DOI:
10.3389/fnbot.2024.1482281
Publication Date:
2025-02-12T07:31:10Z
AUTHORS (5)
ABSTRACT
Human skeleton-based action recognition is an important task in the field of computer vision. In recent years, masked autoencoder (MAE) has been used in various fields due to its powerful self-supervised learning ability and has achieved good results in masked data reconstruction tasks. However, in visual classification tasks such as action recognition, the limited ability of the encoder to learn features in the autoencoder structure results in poor classification performance. We propose to enhance the encoder's feature extraction ability in classification tasks by leveraging the latent space of variational autoencoder (VAE) and further replace it with the latent space of vector quantized variational autoencoder (VQVAE). The constructed models are called SkeletonMVAE and SkeletonMVQVAE, respectively. In SkeletonMVAE, we constrain the latent variables to represent features in the form of distributions. In SkeletonMVQVAE, we discretize the latent variables. These help the encoder learn deeper data structures and more discriminative and generalized feature representations. The experiment results on the NTU-60 and NTU-120 datasets demonstrate that our proposed method can effectively improve the classification accuracy of the encoder in classification tasks and its generalization ability in the case of few labeled data. SkeletonMVAE exhibits stronger classification ability, while SkeletonMVQVAE exhibits stronger generalization in situations with fewer labeled data.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (43)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....