Preclinical evaluation and first in human study of Al18F radiolabeled ODAP-urea-based PSMA targeting ligand for PET imaging of prostate cancer

Pulmonary and Respiratory Medicine clinical translational Radiology, Nuclear Medicine and Imaging Positron emission tomography oxalyldiaminopropionic acid-urea (ODAP-Urea) ligand Cancer research Biochemistry Role of Fibroblast Activation in Cancer Progression 03 medical and health sciences Advancements in Prostate Cancer Research Biodistribution 0302 clinical medicine In vitro Glutamate carboxypeptidase II Health Sciences Alpha Particle Therapy In vivo PSMA Internal medicine Biology RC254-282 Cancer Prostate cancer LNCaP Prostate Neoplasms. Tumors. Oncology. Including cancer and carcinogens Development and Applications of Radiopharmaceuticals prostate cancer PET Imaging 3. Good health Chemistry Oncology Nuclear medicine Medicine [18F]AlF2+ Imaging agent Biotechnology
DOI: 10.3389/fonc.2022.1030187 Publication Date: 2022-10-20T11:34:24Z
ABSTRACT
PurposeThis study aimed to introduce a novel [18F]AlF-labeled ODAP-Urea-based Prostate-specific membrane antigen (PSMA) probe, named [18F]AlF-PSMA-137, which was derived from the successful modification of glutamate-like functional group. The preclinically physical and biological characteristics of the probe were analyzed. Polit clinical PET/CT translation was performed to analyze its feasibility in clinical diagnosis of prostate cancer.Methods[18F]AlF-PSMA-137 was maturely labeled with the [18F]AlF2+ labeling technique. It was analyzed by radio-HPLC for radiochemical purity and stability analysis in vitro and in vivo. The PSMA specificity was investigated in PSMA-positive (LNCaP) and PSMA-negative (PC3) cells, and the binding affinity was evaluated in LNCaP cells. Micro-PET/CT imaging was performed in mice bearing LNCaP or PC3 tumors. Thirteen patients with newly diagnosed prostate cancer were included for [18F]AlF-PSMA-137 PET/CT imaging. Physiologic biodistribution and tumor burden were semi-quantitatively evaluated and the radiation dosimetry of [18F]AlF-PSMA-137 was estimated.ResultsThe radiochemical yield of [18F]AlF-PSMA-137 was 54.2 ± 10.7% (n = 16) with the radiochemical purity over 99% and the specific activity of 26.36 ± 7.33 GBq/μmol. The binding affinity to PSMA was 2.11 ± 0.63 nM. [18F]AlF-PSMA-137 showed high cell/tumor uptake which can be specifically blocked by PSMA inhibitor. According to the biodistribution in patients, [18F]AlF-PSMA-137 was mainly accumulated in kidneys, lacrimal glands, parotid glands, submandibular glands and liver which was similar to the extensive Glu-Ureas based probes. A total of 81 lesions were detected in PET/CT imaging and over 91% of lesions increased between 1 h p.i. (SUVmean: 10.98 ± 18.12) and 2 h p.i. (SUVmean: 14.25 ± 21.28) (p < 0.001). Additionally, the probe showed intensive accumulation in lesions which provided excellent imaging contrast with the high tumor-to-muscle ratio of 15.57 ± 27.21 at 1 h p.i. and 25.42 ± 36.60 at 2 h p.i. (p < 0.001), respectively. The effective dose of [18F]AlF-PSMA-137 was estimated as 0.0119 ± 0.0009 mSv/MBq.ConclusionAn ODAP-Urea-based PSMA probe [18F]AlF-PSMA-137 was successfully prepared with high specificity and binding affinity to PSMA. Micro-PET/CT imaging study demonstrated its feasibility for prostate cancer imaging. Pilot clinical study showed its potential for delay-imaging and prostate cancer detection.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (41)
CITATIONS (5)