A Comprehensive Analysis of Urban Flooding Under Different Rainfall Patterns: A Full-Process Perspective in Haining, China

DOI: 10.3390/atmos16030305 Publication Date: 2025-03-06T09:55:08Z
ABSTRACT
Urban flooding, driven by extreme rainfall events and urbanization, poses substantial risks to urban safety and infrastructure. This study employed a neighborhood-scale InfoWorks ICM model to analyze the full-process impacts of urban flooding under six rainfall return periods in Haining, China. The results reveal distinct non-linear responses from the 3-year to 50-year rainfall return period: (1) the surface runoff volume increases by 64.3%, with peak timing advancing by about one minute; (2) the overflow nodes rise from 37.35% to 63.24%, with durations over 30 min increasing by 78.6%; (3) the inundation areas expand by 164.9%, with maximum depths increasing by 0.31 m, showing significant regional disparities; and (4) high-risk zones, such as Haining People’s Square and Railway Station, require targeted interventions due to severe surface overflow and inundation. This comprehensive analysis emphasizes the need for tailored and phased flood prevention measures that address each stage of urban flooding. It provides a strong framework to guide urban planning and enhance resilience against rainfall-induced urban flooding.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (29)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....