Imaging Microstructural Parameters of Breast Tumor in Patient Using Time-Dependent Diffusion: A Feasibility Study

DOI: 10.3390/diagnostics15070823 Publication Date: 2025-03-25T14:53:54Z
ABSTRACT
Objectives: To explore the feasibility of time-dependent diffusion in clinical applications of breast MRI, as well as the capacity of quantitative microstructural mapping for characterizing the cellular properties in malignant and benign breast tumors. Methods: 38 patients with 45 lesions were enrolled. Diffusion MRI acquisition was conducted with a combination of pulsed gradient spin-echo sequences (PGSE) and oscillating gradient spin-echo (OGSE) on a 3T MRI scanner. The microstructural parameters including cellularity extracellular diffusivity (Dex), mean cell size, intracellular volume fraction (νin), and the apparent diffusion coefficient (ADC) values were calculated. Each parameter was compared using the unpaired t-test between malignant and benign tumors. The area under the receiver operating characteristic curve (AUC) values was used to evaluate the diagnostic performance of different indices. Results: The mean diameter, Dex, ADC0Hz, ADC25Hz, and ADC50Hz were significantly lower in the malignant group than in the benign group (p < 0.001), while νin and cellularity were significantly higher in the malignant group (p < 0.001). All the microstructural parameters and time-dependent ADC values achieved high accuracy in differentiating between malignant and benign tumors of the breast. For microstructural parameters, the AUC of the cellularity was greater than others (AUC = 0.936). In an immunohistochemical subgroup comparison, the PR-positive group had significantly lower νin and cellularity, and significantly elevated Dex and ADC0Hz compared to the negative groups (p < 0.05). When combining diffusion parameters (cellularity, diameter, and ADC25Hz), the highest diagnostic performance was obtained with an AUC of 0.969. Conclusions: DWI with a short diffusion time is capable of providing additional microstructural parameters in differentiating between benign and malignant breast tumors. The time-dependent diffusion MRI parameters have the potential to serve as a non-invasive tool to probe the differences in the internal structures of breast lesions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (45)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....