A Dual-Armed Robotic Puncture System: Design, Implementation and Preliminary Tests

629 03 medical and health sciences 0302 clinical medicine puncture robot; renal puncture; master–slave control; admittance control
DOI: 10.3390/electronics11050740 Publication Date: 2022-03-01T01:09:57Z
ABSTRACT
Traditional renal puncture surgery requires manual operation, which has a poor puncture effect, low surgical success rate, and high incidence of postoperative complications. Robot-assisted puncture surgery can effectively improve the accuracy of punctures, improve the success rate of surgery, and reduce the occurrence of postoperative complications. This paper provides a dual-armed robotic puncture scheme to assist surgeons. The system is divided into an ultrasound scanning arm and a puncture arm. Both robotic arms with a compliant positioning function and master–slave control function are designed, respectively, and the control system is achieved. The puncture arm’s position and posture are decoupled by the wrist RCM mechanism and the arm decoupling mechanism. According to the independent joint control principle, the compliant positioning function is realized based on the single-joint human–computer interactive admittance control. The simulation and tests verify its functions and performance. The differential motion incremental master–slave mapping strategy is used to realize the master–slave control function. The error feedback link is introduced to solve the cumulative error problem in the master–slave control. The dual-armed robotic puncture system prototype is established and animal tests verify the effectiveness.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (26)
CITATIONS (3)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....