Multi-Environment Vehicle Trajectory Automatic Driving Scene Generation Method Based on Simulation and Real Vehicle Testing
DOI:
10.3390/electronics14051000
Publication Date:
2025-03-03T08:22:44Z
AUTHORS (8)
ABSTRACT
As autonomous vehicles increasingly populate roads, robust testing is essential to ensure their safety and reliability. Due to the limitation that traditional testing methodologies (real-world and simulation testing) are difficult to cover a wide range of scenarios and ensure repeatability, this study proposes a novel virtual-real fusion testing approach that integrates Graph Theory and Artificial Potential Fields (APF) in virtual-real fusion autonomous vehicle testing. Conducted using SUMO software, our strategic lane change and speed adjustment simulation experiments demonstrate that our approach can efficiently handle vehicle dynamics and environmental interactions compared to traditional Rapidly-exploring Random Tree (RRT) methods. The proposed method shows a significant reduction in maneuver completion times—up to 41% faster in simulations and 55% faster in real-world tests. Field experiments at the Vehicle-Road-Cloud Integrated Platform in Suzhou High-Speed Railway New Town confirmed the method’s practical viability and robustness under real traffic conditions. The results indicate that our integrated approach enhances the authenticity and efficiency of testing, thereby advancing the development of dependable, autonomous driving systems. This research not only contributes to the theoretical framework but also has practical implications for improving autonomous vehicle testing processes.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (24)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....