Inhibitory Potential of Boscalid and Abamectin Towards Acetylcholinesterase and Butyrylcholinesterase: Computational and In Vitro Studies
DOI:
10.3390/ijms26072865
Publication Date:
2025-03-21T15:06:48Z
AUTHORS (9)
ABSTRACT
The growing demand for agricultural products has led to the misuse of pesticides, resulting in the use of higher concentrations of these substances. This has led to an increase in toxicity imposed on other beneficial organisms and to the bioaccumulation of toxic pesticide concentrations in the bodies of both pests and non-target organisms, as well as in their end users, including humans. In this study, the neurotoxic potential of the commonly used pesticides abamectin (an insecticide) and boscalid (a fungicide) was evaluated. Both in vitro and in silico studies showed that human butyrylcholinesterase is not a target for abamectins B1A and B1B. Boscalid showed a modest Glide score (−28.8 kJ/mol) and a considerably higher IC50 (308.8 µM) against human butyrylcholinesterase than the approved inhibitor (2-((1-(benzenesulfonyl)-1H-indol-4-yl)oxy)ethyl)(benzyl)amine (IC50 = 0.473 µM). However, due to its non-mutagenicity and low toxicity, structural analogues of boscalid might be considered as candidates for the symptomatic treatment of Alzheimer’s disease. Molecular dynamics simulations over 100 ns confirmed the stability of boscalid within the active site of butyrylcholinesterase, where it maintained key interactions with catalytic residues such as Trp82 and His438. These findings highlight its potential as a starting point for structure-based drug design strategies aimed at optimizing cholinesterase inhibitors with improved pharmacokinetic properties. According to absorption, distribution, metabolism, elimination, and toxicity studies, boscalid is orally active, which cannot be attributed to abamectins B1A and B1B.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (33)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....