Spatiotemporal Impacts and Mechanisms of Multi-Dimensional Urban Morphological Characteristics on Regional Heat Effects in the Guangdong–Hong Kong–Macao Greater Bay Area

DOI: 10.3390/land14040729 Publication Date: 2025-03-28T17:36:49Z
ABSTRACT
The impact of urban morphology characteristics on regional thermal environments is a crucial topic in urban planning and climate adaptation research. However, existing studies are often limited to a single dimension and fail to fully reveal the spatiotemporal impact mechanisms of multi-dimensional urban morphology on thermal environments and their connection to regional planning policies. This study focuses on the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), combining quantitative data from landscape pattern indices, land use expansion patterns, and local climate zones (LCZs) derived from 2000 to 2020. By using geographically weighted regression and spatial autocorrelation analysis, we systematically explore the spatiotemporal effects and mechanisms of multi-dimensional urban morphology characteristics on regional thermal effects. We found the following points. (1) Built-up land patch density is significantly positively correlated with LST, with the urban heat island (UHI) effect spreading from core areas to the periphery; this corroborates the thermal environment differentiation features under the “multi-center, networked” spatial planning pattern of the GBA. (2) Outlying expansion mitigates local LST rise through an ecological isolation effect, and infill expansion significantly exacerbates the UHI effect due to high-intensity development, reflecting the differentiated impacts of various expansion patterns on the thermal environment. (3) LCZ spatial distribution aligns closely with regional planning, with the solar radiation shading effect of high-rise buildings significantly cooling daytime LSTs, whereas the thermal storage properties of traditional building materials and human heat sources cause nighttime LST increases; this reveals the deep influence of urban morphology mechanisms, building materials, and human activities on thermal environments. The findings provide scientific support for achieving a win–win goal of high-quality development and ecological security in the GBA while also offering a theoretical basis and practical insights for thermal environment regulation in high-density urban clusters worldwide.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (47)
CITATIONS (0)