Effect of Notches on Fatigue Crack Initiation and Early Propagation Behaviors of a Ni-Based Superalloy at Elevated Temperatures
DOI:
10.3390/met15040384
Publication Date:
2025-03-31T09:10:07Z
AUTHORS (3)
ABSTRACT
The role of notch stress and surface defects on fatigue crack initiation and small-crack propagation behavior has been investigated using groove simulation specimens. The naturally initiated small-crack growth tests have been performed on a FGH4099 superalloy at 500 °C and 700 °C. The findings indicate that elevated testing temperature significantly reduced the proportion of fatigue crack initiation life, with a less pronounced effect on the proportion of life for cracks to grow to First Engineering Crack size. Competing crack initiation modes were observed in the fatigue test of groove simulation specimens. The location of maximum principal stress was dominant fatigue crack initiation sites, and for specimens with surface inclusions, the defect location can also serve as a crack initiation site. Furthermore, crack initiation modes were found to have a more pronounced effect on the small-crack growth rate. A turning point observed in the crack growth rate curves for specimens with multi-site crack initiation was attributed to crack shielding and subsequent coalescence.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (32)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....