Laser Pulses for Studying Photoactive Spin Centers with EPR
DOI:
10.3390/mi16040396
Publication Date:
2025-03-31T09:10:07Z
AUTHORS (6)
ABSTRACT
Quantum technologies are currently being explored for various applications, including computing, secure communication, and sensor technology. A critical aspect of achieving high-fidelity spin manipulations in quantum devices is the controlled optical initialization of electron spins. This paper introduces a low-cost programming scheme based on a 32-bit STM32F373 microcontroller, aimed at facilitating high-precision measurements of optically active solid-state spin centers within semiconductor crystals (SiC, hBN, and diamond) utilizing a multi-pulse sequence. The effective shaping of short optical pulses across semiconductor and solid-state lasers, covering the visible to near-infrared range (405–1064 nm), has been validated through photoinduced electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies. The application of pulsed laser irradiation influences the EPR relaxation parameters associated with spin centers, which are crucial for advancements in quantum computing. The presented experimental approach facilitates the investigation of weak electron–nuclear interactions in crystals, a key factor in the development of quantum memory utilizing nuclear qubits.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (39)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....