Knowledge-Inference-Based Intelligent Decision Making for Nonferrous Metal Mineral-Processing Flowsheet Design
DOI:
10.3390/min15040374
Publication Date:
2025-04-04T10:52:56Z
AUTHORS (6)
ABSTRACT
With the increasing diversification of ore types and the complexity of processing techniques in the mining industry, traditional decision-making methods for mineral processing flowsheets can no longer meet the high efficiency and intelligence requirements. This paper proposes a knowledge graph-based framework for constructing a mineral-processing design knowledge base and knowledge reasoning, aiming at providing intelligent and efficient decision support for mining engineers. This framework integrates Chinese NLP models for text vectorization, optimizes prompt generation through Retrieval Augmented Generation (RAG) technology, realizes knowledge graph construction, and implements knowledge reasoning for nonferrous metal mineral-processing design using large reasoning models. By analyzing the genetic characteristics of ores and the requirements of processing techniques, the framework outputs reasonable flowsheet designs, which could help engineers save research time and labor in optimizing processes, selecting suitable reagents, and adjusting process parameters. Through decision analysis of the mineral-processing flowsheets for three typical copper mines, the framework demonstrates its advantages in improving process flowsheet design, and shows good potential for further application in complex mineral-processing environments.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (30)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....