Observations of the Microphysics and Type of Wintertime Mixed-Phase Precipitation, and Instrument Comparisons at Sorel, Quebec, Canada
DOI:
10.3390/rs17060945
Publication Date:
2025-03-07T14:38:46Z
AUTHORS (7)
ABSTRACT
Winter mixed-phase precipitation (P) impacts transportation, electric power grids, and homes. Forecasting winter precipitation such as freezing precipitation (ZP), freezing rain (ZR), freezing drizzle (ZL), ice pellets (IPs), and the snow (S) and rain (R) boundary remains challenging due to the complex cloud microphysical and dynamical processes involved, which are difficult to predict with the current numerical weather prediction (NWP) models. Understanding these processes based on observations is crucial for improving NWP models. To aid this effort, Environment and Climate Change Canada deployed specialized instruments such as the Vaisala FD71P and OTT PARSIVEL disdrometers, which measure P type (PT), particle size distributions, and fall velocity (V). The liquid water content (LWC) and mean mass-weighted diameter (Dm) were derived based on the PARSIVEL data during ZP events. Additionally, a Micro Rain Radar (MRR) and an OTT Pluvio2 P gauge were used as part of the Winter Precipitation Type Research Multi-Scale Experiment (WINTRE-MIX) field campaign at Sorel, Quebec. The dataset included manual measurements of the snow water equivalent (SWE), PT, and radiosonde profiles. The analysis revealed that the FD71P and PARSIVEL instruments generally agreed in detecting P and snow events. However, FD71P tended to overestimate ZR and underestimate IPs, while PARSIVEL showed superior detection of R, ZR, and S. Conversely, the FD71P performed better in identifying ZL. These discrepancies may stem from uncertainties in the velocity–diameter (V-D) relationship used to diagnose ZR and IPs. Observations from the MRR, radiosondes, and surface data linked ZR and IP events to melting layers (MLs). IP events were associated with colder surface temperatures (Ts) compared to ZP events. Most ZR and ZL occurrences were characterized by light P with low LWC and specific intensity and Dm thresholds. Additionally, snow events were more common at warmer T compared to liquid P under low surface relative humidity conditions. The Pluvio2 gauge significantly underestimated snowfall compared to the optical probes and manual measurements. However, snowfall estimates derived from PARSIVEL data, adjusted for snow density to account for riming effects, closely matched measurements from the FD71P and manual observations.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....