Integrating InSAR Data and LE-Transformer for Foundation Pit Deformation Prediction
DOI:
10.3390/rs17061106
Publication Date:
2025-03-21T08:58:38Z
AUTHORS (6)
ABSTRACT
The rapid development of urban infrastructure has accelerated the construction of large foundation pit projects, posing challenges for deformation monitoring and safety. This study proposes a novel approach integrating time-series InSAR data with a multivariate LE-Transformer model for deformation prediction. The LE-Transformer model integrates Long Short-Term Memory (LSTM) to capture temporal dependencies, Efficient Additive Attention (EAA) to reduce computational complexity, and Transformer mechanisms to model global data relationships. Deformation monitoring was performed using PS-InSAR and SBAS-InSAR techniques, showing a high correlation coefficient (0.92), confirming the reliability of the data. Gray relational analysis identified key influencing factors, including rainfall, subway construction, residential buildings, soil temperature, and hydrogeology, with rainfall being the most significant (correlation of 0.838). These factors were incorporated into the LE-Transformer model, which outperformed univariate models, achieving a mean absolute percentage error (MAPE) of 2.5%. This approach provides a robust framework for deformation prediction and early warning systems in urban infrastructure projects.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (50)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....