Lifelong Learning-Enabled Fractional Order-Convolutional Encoder Model for Open-Circuit Fault Diagnosis of Power Converters Under Multi-Conditions
DOI:
10.3390/s25061884
Publication Date:
2025-03-18T14:43:51Z
AUTHORS (3)
ABSTRACT
Open-circuit (OC) faults in power converters are common issues in motor drive systems, significantly affecting the safe and stable operation of the system. Conventional models can accurately diagnose faults under a single operating condition. However, when conditions change, these models may fail to recognize new fault features, resulting in a decrease in diagnosis accuracy. To address this challenge, this paper proposes a lifelong learning-enabled fractional order-convolutional encoder model for open-circuit fault diagnosis of power converters under multi-conditions. Firstly, the model automatically extracts and identifies fault signal features using the convolutional module and the encoder module, respectively. Subsequently, the model’s iterative computational process is optimized by learning historical gradient information through fractional order, and enhancing the model’s ability to capture the long-term dependencies inherent in fault signals. Finally, a multilevel lifelong learning framework has been established to enable the model to continuously learn the fault features of power converter under multi-conditions, thereby avoiding catastrophic forgetting that can occur when the model learns different tasks. The proposed model effectively addresses the challenge of low fault diagnosis accuracy that occurs when the operating conditions of the power converter change, achieving a diagnosis accuracy of 96.89% across 85 fault categories under multi-conditions.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (48)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....