[Association between the types of obesity and the 10-year-coronary heart disease risk, in Tibet Autonomous Region and Xinjiang Uygur Autonomous Region].
Adult
Male
China
Coronary Disease
Middle Aged
Reference Standards
Tibet
Asian People
Psychological Distance
Risk Factors
Obesity, Abdominal
Ethnicity
Prevalence
Humans
Female
Obesity
Seasons
Aged
DOI:
10.3760/cma.j.issn.0254-6450.2017.06.006
Publication Date:
2017-06-10
AUTHORS (10)
ABSTRACT
Objective: To investigate the association between types of obesity and 10-year-coronary heart disease risk in Tibet Xinjiang China. Methods: Using multi-stage random sampling method, 7 631 participants aged 35 or older were examined under International Standardized Examination process but with only 5 802 eligible for analysis, 2015-2016 season. Results: The prevalence rates general obesity, central visceral compound 0.53%, 12.62%, 10.08% 42.35%, respectively. Out all cases, 58.65% (1 441/2 457) them appeared as having our study. Risk related to was higher men than women [(3.05±4.14)% vs. (1.42±2.37) %, P<0.000 1. Compound (30.16%) showed highest proportion on (28.01%), (18.46%) (19.35%). After adjustment confounding factors, results from multivariate analysis associated (OR=2.889, 95%CI: 2.525-3.305). People anomalous BMI WC seemed have had (OR=3.168, 2.730-3.677). Conclusions: Obesity popular residents areas Men people (especially both abnormal) carry greater disease.目的: 探讨我国新疆、西藏地区居民肥胖类型以及与10年冠心病发病风险关系。 方法: 采用多阶段分层随机抽样的方法,共抽取新疆、西藏两地≥35岁研究对象7 631人,其中5 802人纳入本研究分析。 结果: 研究对象的普通肥胖、腹型肥胖、内脏肥胖和混合型肥胖患病率分别为0.53%、12.62%、10.08%和42.35%。其中混合肥胖中同时满足3种肥胖类型诊断标准的研究对象占58.65%(1 457)。男、女性10年冠心病患病风险分别为(3.05±4.14)%和(1.42±2.37)%(男性高于女性,P<0.000 1)。混合型肥胖研究对象高等级冠心病发病风险所占比例为30.16%,显著高于普通肥胖(19.35%)、腹型肥胖(28.01%)和内脏肥胖(18.46%)。多因素分析校正混杂因素后显示,混合型肥胖人群10年冠心病发病风险高于其他肥胖类型(OR=2.889,95%CI:2.525~3.305),其中BMI和腰围两项指标均异常的研究对象10年冠心病风险更高(OR=3.168,95%CI:2.730~3.677)。 结论: 肥胖问题在新疆、西藏地区较为严重,男性、混合型肥胖(特别是BMI与腰围均异常)人群10年冠心病发病风险高。.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES ()
CITATIONS ()
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....