pKalculator: A pKa predictor for C–H bonds
pKa predictor
c–h pka values
values values;
QD241-441
Science
Q
pka predictor
Organic chemistry
Full Research Paper
DOI:
10.3762/bjoc.20.144
Publication Date:
2024-07-16T12:58:45Z
AUTHORS (3)
ABSTRACT
Determining the pKa values of various C–H sites in organic molecules offers valuable insights for synthetic chemists in predicting reaction sites. As molecular complexity increases, this task becomes more challenging. This paper introduces pKalculator, a quantum chemistry (QM)-based workflow for automatic computations of C–H pKa values, which is used to generate a training dataset for a machine learning (ML) model. The QM workflow is benchmarked against 695 experimentally determined C–H pKa values in DMSO. The ML model is trained on a diverse dataset of 775 molecules with 3910 C–H sites. Our ML model predicts C–H pKa values with a mean absolute error (MAE) and a root mean squared error (RMSE) of 1.24 and 2.15 pKa units, respectively. Furthermore, we employ our model on 1043 pKa-dependent reactions (aldol, Claisen, and Michael) and successfully indicate the reaction sites with a Matthew’s correlation coefficient (MCC) of 0.82.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (42)
CITATIONS (2)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....