Optimal and Pressure-Independent $L^2$ Velocity Error Estimates for a Modified Crouzeix-Raviart Stokes Element with BDM Reconstructions

ddc:510 a priori error estimates article Crouzeix-Raviart finite element 16. Peace & justice variational crime -- Crouzeix-Raviart finite element -- divergence-free mixed method -- incompressible Navier-Stokes equations -- a priori error estimates 01 natural sciences 510 divergence-free mixed method variational crime incompressible Navier-Stokes equations 0101 mathematics
DOI: 10.4208/jcm.1411-m4499 Publication Date: 2015-03-13T08:38:44Z
ABSTRACT
Nearly all inf-sup stable mixed finite elements for the incompressible Stokes equations relax the divergence constraint. The price to pay is that a priori estimates for the velocity error become pressure-dependent, while divergence-free mixed finite elements deliver pressure-independent estimates. A recently introduced new variational crime using lowest-order Raviart-Thomas velocity reconstructions delivers a much more robust modified Crouzeix-Raviart element, obeying an optimal pressure-independent discrete H<sup>1</sup> velocity estimate. Refining this approach, a more sophisticated variational crime employing the lowest-order BDM element is proposed, which also allows proving an optimal pressure independent L<sup>2 </sup> velocity error. Numerical examples confirm the analysis and demonstrate the improved robustness in the Navier-Stokes case.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (34)