Earth’s hypsometry and what it tells us about global sea level

DOI: 10.5194/egusphere-egu24-15498 Publication Date: 2024-03-09T02:09:04Z
ABSTRACT
Over geological time scales, the combination of solid-Earth deformation and climate-dependent surface processes have resulted in a distinct hypsometry (distribution of surface area with elevation), with the highest concentration of surface area focused near the present-day sea surface. However, this distinctive signature of Earth’s hypsometry does not constitute a single well-defined maximum at the present-day sea surface (0 m). Earth’s hypsometry also shows a prominent maximum ~5 m above the present-day sea surface. Here we explore the nature of this 5-m maximum and examine how it evolved over the last glacial cycle and may evolve moving towards a near-ice-free future. We find that the current elevation of this 5-m hypsometric maximum cannot be explained by ongoing sea-level adjustments following the last glacial cycle. Instead, we suggest that global sea level must have been higher for a significant portion of Earth’s recent multi-million-year history. Indeed, global sea level must have been higher by as much as ~9.5 m to bring this hypsometric maximum in accordance with the sea surface, to account for glacial isostatic adjustments such as ocean syphoning. This signifies that our current polar ice-sheet and sea-level state (and our global reference level) should be considered an anomaly in a geological perspective.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....