A Centroid-based Approach for Hierarchical Classification

0202 electrical engineering, electronic engineering, information engineering 02 engineering and technology
DOI: 10.5220/0005339000250033 Publication Date: 2015-06-27T02:57:11Z
ABSTRACT
Classification is a common task in Machine Learning and Data Mining. Some classification problems need to take into account a hierarchical taxonomy establishing an order between involved classes and are called hierarchical classification problems. The protein function prediction can be considered a hierarchical classification problem because their functions may be arranged in a hierarchical taxonomy of classes. This paper presents an algorithm for hierarchical classification using a centroid-based approach with two versions named HCCS and HCCSic respectively. Centroid-based techniques have been widely used to text classification and in this work we explore it’s adoption to a hierarchical classification scenario. The proposed algorithm was evaluated in eight real datasets and compared against two other recent algorithms from the literature. Preliminary results showed that the proposed approach is an alternative for hierarchical classification, having as main advantage the simplicity and low computational complexity with good accuracy.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (0)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....