probabilistic standard cell modeling considering non gaussian parameters and correlations
0202 electrical engineering, electronic engineering, information engineering
02 engineering and technology
DOI:
10.5555/2616606.2616887
Publication Date:
2014-01-01
AUTHORS (6)
ABSTRACT
Variability continues to pose challenges to integrated circuit design. With statistical static timing analysis and high-yield estimation methods, solutions to particular problems exist, but they do not allow a common view on performance variability including potentially correlated and non-Gaussian parameter distributions. In this paper, we present a probabilistic approach for variability modeling as an alternative: model parameters are treated as multi-dimensional random variables. Such a fully mul-tivariate statistical description formally accounts for correlations and non-Gaussian random components. Statistical characterization and model application are introduced for standard cells and gate-level digital circuits. Example analyses of circuitry in a 28 nm industrial technology illustrate the capabilities of our modeling approach.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES ()
CITATIONS ()
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....