Activation function cyclically switchable convolutional neural network model
DOI:
10.7717/peerj-cs.2756
Publication Date:
2025-03-24T08:48:34Z
AUTHORS (1)
ABSTRACT
Neural networks are a state-of-the-art approach that performs well for many tasks. The activation function (AF) is an important hyperparameter that creates an output against the coming inputs to the neural network model. AF significantly affects the training and performance of the neural network model. Therefore, selecting the most optimal AF for processing input data in neural networks is important. Determining the optimal AF is often a difficult task. To overcome this difficulty, studies on trainable AFs have been carried out in the literature in recent years. This study presents a different approach apart from fixed or trainable AF approaches. For this purpose, the activation function cyclically switchable convolutional neural network (AFCS-CNN) model structure is proposed. The AFCS-CNN model structure does not use a fixed AF value during training. It is designed in a self-regulating model structure by switching the AF during model training. The proposed model structure is based on the logic of starting training with the most optimal AF selection among many AFs and cyclically selecting the next most optimal AF depending on the performance decrease during neural network training. Any convolutional neural network (CNN) model can be easily used in the proposed model structure. In this way, a simple but effective perspective has been presented. In this study, first, ablation studies have been carried out using the Cifar-10 dataset to determine the CNN models to be used in the AFCS-CNN model structure and the specific hyperparameters of the proposed model structure. After the models and hyperparameters were determined, expansion experiments were carried out using different datasets with the proposed model structure. The results showed that the AFCS-CNN model structure achieved state-of-the-art success in many CNN models and different datasets.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (59)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....