- Quantum many-body systems
- Quantum and electron transport phenomena
- Theoretical and Computational Physics
- Topological Materials and Phenomena
- Black Holes and Theoretical Physics
- Noncommutative and Quantum Gravity Theories
- Advanced Thermodynamics and Statistical Mechanics
- Quantum chaos and dynamical systems
- Physics of Superconductivity and Magnetism
- Particle physics theoretical and experimental studies
- Quantum Computing Algorithms and Architecture
- Quantum Information and Cryptography
- Cold Atom Physics and Bose-Einstein Condensates
- Graph theory and applications
- Advanced Chemical Physics Studies
- Opinion Dynamics and Social Influence
- Algebraic structures and combinatorial models
- Quantum Chromodynamics and Particle Interactions
- Homotopy and Cohomology in Algebraic Topology
- Molecular Junctions and Nanostructures
- Model Reduction and Neural Networks
- Complex Systems and Time Series Analysis
- Spectroscopy and Quantum Chemical Studies
- Experimental and Theoretical Physics Studies
- Geological Modeling and Analysis
University of Oxford
2022-2025
Centre for Policy Studies
2025
Harish-Chandra Research Institute
2025
International Centre for Theoretical Sciences
2021-2022
Tata Institute of Fundamental Research
2021-2022
Stony Brook University
2012-2018
State University of New York
2015-2018
Birla Institute of Technology and Science, Pilani
2010-2011
Birla Institute of Technology and Science, Pilani - Goa Campus
2010-2011
Continuous phase transitions where symmetry is spontaneously broken are ubiquitous in physics and often found between "Landau-compatible" phases residual symmetries of one a subset the other. However, continuous "deconfined quantum critical" Landau-incompatible symmetry-breaking known to exist certain systems, with anomalous microscopic symmetries. In this Letter, we investigate need for such special conditions. We show that can be family well-known classical statistical mechanical models...
The Onsager algebra, invented to solve the two-dimensional Ising model, can be used construct conserved charges for a family of integrable N <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi></mml:math> -state chiral clock models. We show how it naturally gives rise “pivot” procedure this Hamiltonians. These Hamiltonians have an anti-unitary CPT symmetry that when combined with usual \mathbb{Z}_N display="inline"><mml:msub><mml:mstyle...
We consider ground states of quantum spin chains with symmetry-protected topological (SPT) order as resources for measurement-based computation (MBQC). show that, a wide range SPT phases, the computational power is uniform throughout each phase. This power, defined Lie group executable gates in MBQC, determined by same algebraic information that labels phase itself. prove these groups always contain full set single-qubit gates, thereby affirming long-standing conjecture general phases can...
We investigate the usefulness of ground states quantum spin chains with symmetry-protected topological order (SPTO) for measurement-based computation. show that, in spatial dimension one, if an SPTO phase supports wire, then, subject to additional symmetry condition that is satisfied all cases so far investigated, it can also be used
We present microscopic models of spin ladders which exhibit continuous critical surfaces whose properties and existence, unusually, cannot be inferred from those the flanking phases. These either "multiversality"-the presence different universality classes over finite regions a surface separating two distinct phases-or its close cousin, "unnecessary criticality"-the stable within single, possibly trivial, phase. elucidate these using Abelian bosonization density-matrix renormalization-group...
Perhaps the simplest approach to constructing models with sub-dimensional particles or fractons is require conservation of dipole higher multipole moments. We generalize this allow for moments in phase space and classify all possible classical fracton phase-space laws. focus on a new self-dual model that conserves both quadrupole position momentum; we analyze its dynamics find quasi-periodic orbits evade ergodic exploration full space.
This work investigates the interplay between microscopic symmetries and effective degrees of freedom that define macroscopic phase matter. Considering a spin-ladder model tuning parameters, myriad distinct symmetry-enriched critical states is shown. Although description in each these phases identical, i.e., compact boson conformal field theory, act on fields subtly different ways leading to sharp distinctions nature observables, including presence topological edge modes.
We report new results on classical, Machian, fractons. For fractons of strictly bounded Machian range, we show that local clusters do not exhibit chaos while the global state breaks ergodicity. many fracton evolution characteristically exhibits a central time or Janus point and thus generic non-equilibrium arrow as discussed previously in context classical Cosmology.
We initiate the study of classical mechanics nonrelativistic fractons in its simplest setting—that identical one-dimensional particles with local Hamiltonians characterized by a conserved dipole moment addition to usual symmetries space and time translation invariance. introduce family models <a:math xmlns:a="http://www.w3.org/1998/Math/MathML"><a:mi>N</a:mi></a:math>-body problem for them. find that locality leads “Machian” dynamics which given particle exhibits finite inertia only if...
The program of classifying symmetry-protected topological (SPT) phases in one dimension has been recently completed and opened the doors to studying closely properties systems belonging these phases. It was found that being able constrain form ground states SPT order based on symmetry also makes it possible explore novel resource for processing quantum information. In this paper, we generalize consideration Else et al. [Phys. Rev. Lett. 108, 240505 (2012)], where shown ground-state spin-1...
Symmetry-Protected Topological (SPT) phases are gapped of quantum matter protected by global symmetries that cannot be adiabatically deformed to a trivial phase without breaking symmetry. In this work, we show that, for several SPT short range entangled (SRE), enlarging may effectively achieve the consequences explicitly symmetries. other words, demonstrate non-trivial can unwound ones symmetry extension- through path where Hilbert space is enlarged and Hamiltonian invariant under an...
Measurement-based quantum computation describes a scheme where entanglement of resource states is utilized to simulate arbitrary gates via local measurements. Recent works suggest that symmetry-protected topologically nontrivial, short-ranged entangled are promising candidates for such resource. Miller and Miyake [npj Quantum Inf. 2, 16036 (2016)] recently constructed particular...
We show how $1+1$-dimensional fermionic symmetry-protected topological states (SPTs, i.e., nontrivial short-range entangled gapped phases of quantum matter whose boundary exhibits 't Hooft anomaly and bulk cannot be deformed into a trivial tensor product state under finite-depth local unitary transformations only in the presence global symmetries), indeed can unwound to by enlarging Hilbert space via adding extra degrees freedom suitably extending symmetries. The extended projective symmetry...
We study the eigenstate phases of disordered spin chains with on-site finite non-Abelian symmetry. develop a general formalism based on standard group theory to construct local Hamiltonians invariant under any then specialize case simplest group, ${S}_{3}$, and numerically particular two-parameter spin-1 Hamiltonian. observe thermal phase many-body localized spontaneous symmetry breaking (SSB) from ${S}_{3}$ ${\mathbb{Z}}_{3}$ in our model diagnose these using full entanglement distributions...
The authors study spectral correlations in the many-body-localized phase by computing form factor for which they obtain an expression and postulate presence of a universal power-law scaling regime.
We study muon pair production $ e^+ e^- \to \mu^+ \mu^-$ in the noncommutative(NC) extension of standard model using Seiberg-Witten maps this to second order noncommutative parameter $\Theta_{\mu \nu}$. Using $\mathcal{O}(\Theta^2)$ Feynman rules, we find $\mathcal{O}(\Theta^4)$ cross section(with all other lower contributions simply cancelled) for production. The momentum dependent NC interaction significantly modifies section and angular distributions which are different from commuting...
We argue for the existence of a universal phase diagram $k$-local quantum chains subject to conservation total charge and its dipole moment, which exhibits "freezing" transitions between strongly weakly Hilbert space fragmented phases as filling $\nu$ is varied. show that these continuous occur at critical $\nu_c=(k-2)^{-1}$ independently on-site dimension $d$. To this end, we analytically prove any $d$, state $\nu<\nu_c$ hosts finite density sites belonging "blockages": local regions across...
We study the Higgs boson pair production at linear collider in noncommutative extension of standard model using Seiberg-Witten map this to first order parameter ${\ensuremath{\Theta}}_{\ensuremath{\mu}\ensuremath{\nu}}$. Unlike (where process is forbidden) here directly interacts with photon. find that cross section can be quite significant for scale $\ensuremath{\Lambda}$ lying range 0.5 TeV 1.0 TeV. Using experimental (LEP 2, Tevatron, and global electroweak fit) bound on mass, we obtain...
We prove that the boundaries of all non-trivial 1+1 dimensional intrinsically fermionic symmetry-protected-topological phases, protected by finite on-site symmetries (unitary or anti-unitary), are supersymmetric quantum mechanical systems. This supersymmetry does not require any fine-tuning underlying Hamiltonian, arises entirely as a consequence boundary 't Hooft anomaly classifies phase and is related to `Bose-Fermi' degeneracy different in nature from other well known degeneracies such...
Abstract We study non-local measures of spectral correlations and their utility in characterizing distinguishing between the distinct eigenstate phases quantum chaotic many-body localized systems. focus on two related quantities, form factor density all gaps, show that they furnish unique signatures can be used to sharply identify phases. demonstrate this by numerically studying three one-dimensional spin chain models with (i) quenched disorder, (ii) periodic drive (Floquet), (iii)...
We study the neutral Higgs boson pair production through $e^{+} e^{-}$ collision in noncommutative(NC) extension of standard model using Seiberg-Witten maps this to first order noncommutative parameter $\Theta_{\mu \nu}$. This process is forbidden at tree level with background space-time being commutative. After including effects earth's rotation we analyse time-averaged cross section (in light LEP II and LHC data) future Linear Collider which can be quite significant for NC scale $\Lambda$...
We investigate the phase diagram of a quantum spin-1 chain whose Hamiltonian is invariant under global onsite $A_4$, translation and lattice inversion symmetries. detect different gapped phases characterized by SPT order symmetry breaking using matrix product state parameters. observe rich variety matter combination fractionalization also interplay between spatial Examples continuous transitions directly topologically nontrivial are observed.
We study the muon pair production $ e^+ e^- \to \mu^+ \mu^-$ in framework of non-minimal noncommutative(NC) standard model to second order NC parameter $\Theta_{\mu\nu}$. The $\mathcal{O}(\Theta^2)$ momentum dependent interaction significantly modifies cross section and angular distributions which are different from model. After including effects earth's rotation we analyse time-averaged time observables detail. azimuthal distribution shows siginificant departure find strong dependence total...
The compressed baryonic matter (CBM) experiment at the future FAIR accelerator facility near Darmstadt, Germany, aims investigation of highest net baryon densities but moderate temperatures, by colliding heavy-ions beam energies from 10 to 45 A GeV. research program comprises exploration some basic landmarks QCD phase diagram like transitions hadronic partonic phase, region first order de-confinement as well chiral transition, and critical end point. proposed key observables include...