P. Lipiński

ORCID: 0000-0001-8670-740X
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Composite Material Mechanics
  • Microstructure and mechanical properties
  • Metal Forming Simulation Techniques
  • Metallurgy and Material Forming
  • Numerical methods in engineering
  • Advanced machining processes and optimization
  • Microstructure and Mechanical Properties of Steels
  • High-Velocity Impact and Material Behavior
  • Temporomandibular Joint Disorders
  • Elasticity and Material Modeling
  • Dental Implant Techniques and Outcomes
  • Advanced Surface Polishing Techniques
  • Mechanical Behavior of Composites
  • Bone Tissue Engineering Materials
  • Composite Structure Analysis and Optimization
  • Cellular and Composite Structures
  • Cleft Lip and Palate Research
  • Fatigue and fracture mechanics
  • Craniofacial Disorders and Treatments
  • Material Properties and Failure Mechanisms
  • Dental materials and restorations
  • Mechanical stress and fatigue analysis
  • Orthopaedic implants and arthroplasty
  • Osteoarthritis Treatment and Mechanisms
  • Material Properties and Applications

Centre National de la Recherche Scientifique
1997-2022

Université de Lorraine
2011-2022

Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux
1995-2022

École Nationale d'Ingénieurs de Metz
2011-2022

ParisTech
2020-2022

Commissariat à l'Énergie Atomique et aux Énergies Alternatives
2021

Direction de la Recherche Technologique
2021

École nationale supérieure d'arts et métiers
2020

École Normale Supérieure - PSL
1998-2013

Université Sorbonne Paris Nord
2011

10.1016/0749-6419(89)90027-2 article EN International Journal of Plasticity 1989-01-01

10.1016/j.jmbbm.2012.01.008 article EN Journal of the mechanical behavior of biomedical materials/Journal of mechanical behavior of biomedical materials 2012-01-30

10.1016/j.jmbbm.2013.08.011 article EN Journal of the mechanical behavior of biomedical materials/Journal of mechanical behavior of biomedical materials 2013-08-20

10.1016/j.ijmachtools.2012.02.006 article EN International Journal of Machine Tools and Manufacture 2012-02-25

10.1016/s0020-7683(02)00244-5 article EN International Journal of Solids and Structures 2002-08-01

10.1016/j.ijmachtools.2005.12.006 article EN International Journal of Machine Tools and Manufacture 2006-01-27

Plastic incompatibility second-order stresses were determined for different orientations of a polycrystalline grain, using X-ray diffraction data and results the self-consistent elasto-plastic model. The in cold rolled ferritic steel both as-received under tensile loaded conditions. It has been shown that Reuss model applied to near surface volume provide best approaches determine elastic constants. For first time, energy an anisotropic material (arising from plastic incompatibilities...

10.1107/s0021889808023911 article EN Journal of Applied Crystallography 2008-09-04

Abstract The present work aims to provide a general framework deal with an elementary heterogeneous problem, where the inhomogeneity consists of n-layered inclusion composed n concentric ellipsoids made anisotropic elastic materials. methodology is based on combination Green's function techniques interface operators, illustrating stress and strain jump conditions at interfaces between two adjacent coatings, which are considered perfectly bonded. model validated in case double-coated...

10.1080/14786430500343868 article EN The Philosophical Magazine A Journal of Theoretical Experimental and Applied Physics 2006-03-20

Abstract A new method for the determination of residual stresses in plastically deformed polycrystalline materials is presented. This based on standard X-ray and neutron diffraction measurements 〈d hkl〉 interplanar spacings different directions. Until now estimation was limited to those first-order but presented takes into account both first-and second-order stresses.

10.1080/01418619408242223 article EN Philosophical Magazine A 1994-03-01

Ce travail propose une approche générale au problème de la détermination du comportement élastoplastique des polycristaux métalliques en grandes déformations à partir propriétés constituants.On discute tout d'abord les effets paramètres physiques intra et intergranulaires sur mécanismes déformation le global.Le formalisme Hill est utilisé pour effectuer transitions d'échelle.Une nouvelle relation intégrale cinématique reliant gradient vitesse locale macroscopique démontrée.Plusieurs...

10.1051/rphysap:01990002504036100 article FR Revue de Physique Appliquée 1990-01-01

10.1007/s10237-010-0274-y article EN Biomechanics and Modeling in Mechanobiology 2010-12-06

The dynamic behaviour of elastomers is assumed to follow a constitutive differential equation non-integral (fractional) order. In order describe the peculiar frequency response loss factor, has been refined by introducing fifth parameter classical fourth-order equation. asymmetry factor in domain comes from different time-derivative orders stress and strain. Either smooth or stabilization plateau at high can be modelled suitable difference between two time derivatives. physical validity...

10.24423/aom.315 article EN Archives of Mechanics 2009-01-11

This paper is devoted to some general theoretical considerations concerning the modelling of effective properties composite materials based on inclusion concept. Starting from kinematical integral equation for inhomogeneous materials, all principal homogenisation methods are reviewed and analysed. Special attention focused three approaches, namely self-consistent scheme, Mori-Tanaka method incremental procedure derived differential scheme. Mono-site multi-site versions these approximate...

10.24423/aom.209 article EN Archives of Mechanics 2006-01-05
Coming Soon ...