Kirsten Wilk

ORCID: 0000-0001-9413-4744
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Graph Theory Research
  • graph theory and CDMA systems
  • Analytic Number Theory Research
  • Mathematical functions and polynomials
  • Finite Group Theory Research
  • Mathematical Approximation and Integration
  • Limits and Structures in Graph Theory
  • Interconnection Networks and Systems
  • Advanced Mathematical Identities

University of Lethbridge
2018-2021

In this article, we provide explicit bounds for the prime counting functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="theta left-parenthesis x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>θ<!-- θ --></mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\theta (x)</mml:annotation> </mml:semantics> </mml:math>...

10.1090/mcom/3643 article EN publisher-specific-oa Mathematics of Computation 2021-03-24

We provide a computer-assisted proof that if G is any finite group of order kp, where k < 48 and p prime, then every connected Cayley graph on hamiltonian (unless kp = 2). As part the proof, it verified less than either or laceable (or has valence three).

10.26493/2590-9770.1250.763 article EN The Art of Discrete and Applied Mathematics 2020-05-04

In this article, we provide explicit bounds for the prime counting function $\theta(x)$ in all ranges of $x$. The error term $\theta (x)- x$ are shape $\epsilon and $\frac{c_k x}{(\log x)^k}$, $k=1,\ldots,5$. Tables values $\epsilon$ $c_k$ provided.

10.48550/arxiv.2002.11068 preprint EN other-oa arXiv (Cornell University) 2020-01-01

We provide a computer-assisted proof that if G is any finite group of order kp, where k &lt; 48 and p prime, then every connected Cayley graph on hamiltonian (unless kp = 2). As part the proof, it verified less than either or laceable (or has valence three).

10.48550/arxiv.1805.00149 preprint EN other-oa arXiv (Cornell University) 2018-01-01
Coming Soon ...