K. Honscheid
- Particle physics theoretical and experimental studies
- Galaxies: Formation, Evolution, Phenomena
- Quantum Chromodynamics and Particle Interactions
- Astronomy and Astrophysical Research
- Gamma-ray bursts and supernovae
- High-Energy Particle Collisions Research
- Stellar, planetary, and galactic studies
- Cosmology and Gravitation Theories
- Dark Matter and Cosmic Phenomena
- Astrophysics and Cosmic Phenomena
- CCD and CMOS Imaging Sensors
- Neutrino Physics Research
- Adaptive optics and wavefront sensing
- Radio Astronomy Observations and Technology
- Particle Detector Development and Performance
- Astrophysical Phenomena and Observations
- Astronomical Observations and Instrumentation
- Atomic and Subatomic Physics Research
- Astrophysics and Star Formation Studies
- Medical Imaging Techniques and Applications
- Pulsars and Gravitational Waves Research
- Scientific Research and Discoveries
- Particle Accelerators and Free-Electron Lasers
- Astro and Planetary Science
- Computational Physics and Python Applications
The Ohio State University
2016-2025
State Library of Ohio
2014-2025
The Ohio State University at Lima
2023-2025
California Consortium of Addiction Programs and Professionals
2023-2025
University of California, Santa Cruz
2024
Australian Astronomical Observatory
2024
Macquarie University
2024
University of Pennsylvania
2022
Campbell Collaboration
2009-2021
Trieste Astronomical Observatory
2021
Abstract The DESI Legacy Imaging Surveys ( http://legacysurvey.org/ ) are a combination of three public projects (the Dark Energy Camera Survey, the Beijing–Arizona Sky and Mayall z -band Survey) that will jointly image ≈14,000 deg 2 extragalactic sky visible from northern hemisphere in optical bands g , r using telescopes at Kitt Peak National Observatory Cerro Tololo Inter-American Observatory. combined survey footprint is split into two contiguous areas by Galactic plane. imaging...
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ $griz$ imaging data the first year Dark Energy Survey (DES Y1). combine three two-point functions: (i) cosmic shear correlation function 26 million source galaxies in four redshift bins, (ii) angular autocorrelation 650,000 luminous red five (iii) galaxy-shear cross-correlation positions shears. To demonstrate robustness these results, we use independent pairs...
This biennial review summarizes much of Particle Physics. Using data from previous editions, plus 1900 new measurements 700 papers, we list, evaluate, and average measured properties gauge bosons, leptons, quarks, mesons, baryons. We also summarize searches for hypothetical particles such as Higgs heavy neutrinos, supersymmetric particles. All the particle search limits are listed in Summary Tables. give numerous tables, figures, formulae, reviews topics Standard Model, detectors,...
We present the first cosmology results from large-scale structure in Dark Energy Survey (DES) spanning 5000 deg$^2$. perform an analysis combining three two-point correlation functions (3$\times$2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) cross-correlation of with lens positions. The was designed to mitigate confirmation or observer bias; we describe specific changes made sample following unblinding results. model data within flat $\Lambda$CDM...
Abstract We describe the first public data release of Dark Energy Survey, DES DR1, consisting reduced single-epoch images, co-added source catalogs, and associated products services assembled over 3 yr science operations. DR1 is based on optical/near-infrared imaging from 345 distinct nights (2013 August to 2016 February) by Camera mounted 4 m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. wide-area survey covering ∼5000 deg 2 southern Galactic cap five broad...
We use 26×106 galaxies from the Dark Energy Survey (DES) Year 1 shape catalogs over 1321 deg2 of sky to produce most significant measurement cosmic shear in a galaxy survey date. constrain cosmological parameters both flat ΛCDM and wCDM models, while also varying neutrino mass density. These results are shown be robust using two independent catalogs, photo-z calibration methods, analysis pipelines blind analysis. find 3.5% fractional uncertainty on σ8(Ωm/0.3)0.5=0.782+0.027−0.027 at 68%...
The Dark Energy Camera is a new imager with 22 diameter field of view mounted at the prime focus Victor M. Blanco 4 m telescope on Cerro Tololo near La Serena, Chile. camera was designed and constructed by Survey Collaboration meets or exceeds stringent requirements for wide-field supernova surveys which collaboration uses it. consists five-element optical corrector, seven filters, shutter 60 cm aperture, charge-coupled device (CCD) focal plane 250 μm thick fully depleted CCDs cooled inside...
We report the discovery of eight new ultra-faint dwarf galaxy candidates in second year optical imaging data from Dark Energy Survey (DES). Six these are detected at high confidence, while two lower-confidence identified regions non-uniform survey coverage. The stellar systems found by three independent automated search techniques and as overdensities stars, consistent with isochrone luminosity function an old metal-poor simple population. faint (Mv > -4.7 mag) span a range physical sizes...
We have observed the decays ${\mathit{B}}^{0}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{*}}$(892${)}^{0}$\ensuremath{\gamma} and ${\mathit{B}}^{\mathrm{\ensuremath{-}}}$\ensuremath{\rightarrow}${\mathit{K}}^{\mathrm{*}}$(892${)}^{\mathrm{\ensuremath{-}}}$\ensuremath{\gamma}, which are evidence for quark-level process b\ensuremath{\rightarrow}s\ensuremath{\gamma}. The average branching fraction is...
We report the discovery of eight new Milky Way companions in optical imaging data collected during first year Dark Energy Survey (DES). Each system is identified as a statistically significant over-density individual stars consistent with expected isochrone and luminosity function an old metal-poor stellar population. The objects span wide range absolute magnitudes (MV from to ), physical sizes (), heliocentric distances (). Based on low surface brightnesses, large sizes, and/or...
We report a detection of the baryon acoustic oscillation (BAO) feature in three-dimensional correlation function transmitted flux fraction \Lya forest high-redshift quasars. The study uses 48,640 quasars redshift range $2.1\le z \le 3.5$ from Baryon Oscillation Spectroscopic Survey (BOSS) third generation Sloan Digital Sky (SDSS-III). At mean $z=2.3$, we measure monopole and quadrupole components for separations $20\hMpc<r<200\hMpc$. A peak is seen at separation equal to $(1.01\pm0.03)$...
ABSTRACT We search for excess γ -ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years data from Fermi Large Area Telescope (LAT). Our sample 45 stellar systems includes 28 kinematically dark-matter-dominated dwarf spheroidal (dSphs) 17 recently discovered that have photometric characteristics consistent population known dSphs. For each these targets, relative predicted flux due to dark matter annihilation is taken kinematic...
ABSTRACT We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large surveys. The updated algorithm is applied of Science Verification (SV) data from Dark Energy Survey (DES), and Sloan Digital Sky (SDSS) DR8 set. DES SV catalog locally volume limited contains 786 clusters with richness (roughly equivalent ) . consists 26,311 , sharply increasing threshold as function redshift performance both catalogs shown be excellent,...
We combine Dark Energy Survey Year 1 clustering and weak lensing data with Baryon Acoustic Oscillations (BAO) Big Bang Nucleosynthesis (BBN) experiments to constrain the Hubble constant. Assuming a flat $\Lambda$CDM model minimal neutrino mass ($\sum m_\nu = 0.06$ eV) we find $H_0=67.2^{+1.2}_{-1.0}$ km/s/Mpc (68% CL). This result is completely independent of constant measurements based on distance ladder, Cosmic Microwave Background (CMB) anisotropies (both temperature polarization), strong...
We describe the creation, content, and validation of Dark Energy Survey (DES) internal year-one cosmology data set, Y1A1 GOLD, in support upcoming cosmological analyses. The GOLD set is assembled from multiple epochs DES imaging consists calibrated photometric zeropoints, object catalogs, ancillary products - e.g., maps survey depth observing conditions, star-galaxy classification, redshift estimates that are necessary for accurate wide-area catalog ~137 million objects detected coadded...
We perform a comprehensive study of Milky Way (MW) satellite galaxies to constrain the fundamental properties dark matter (DM). This analysis fully incorporates inhomogeneities in spatial distribution and detectability MW satellites marginalizes over uncertainties mapping between DM halos, system, disruption subhalos by disk. Our results are consistent with cold, collisionless paradigm yield strongest cosmological constraints date on particle models warm, interacting, fuzzy matter. At 95%...
We constrain the mass–richness scaling relation of redMaPPer galaxy clusters identified in Dark Energy Survey Year 1 data using weak gravitational lensing. split into 4 × 3 bins richness λ and redshift |$z$| for ≥ 20 0.2 ≤ 0.65 measure mean masses these their stacked lensing signal. By modelling as 〈M200m|λ, |$z$|〉 = M0(λ/40)F((1 + |$z$|)/1.35)G, we normalization at 5.0 per cent level, finding M0 [3.081 ± 0.075(stat) 0.133(sys)] · 1014 M⊙ 40 0.35. The recovered index is F 1.356 0.051 (stat)...
Due to their proximity, high dark-matter content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection dark matter. Recently, eight new dSph candidates were discovered using first year data from Dark Energy Survey (DES). We searched gamma-ray emission coincident with positions these objects in six years Fermi Large Area Telescope data. found no significant excesses emission. Under assumption that...
We present an improved measurement of the Hubble constant (H_0) using 'inverse distance ladder' method, which adds information from 207 Type Ia supernovae (SNe Ia) Dark Energy Survey (DES) at redshift 0.018 < z 0.85 to existing measurements 122 low (z 0.07) SNe (Low-z) and Baryon Acoustic Oscillations (BAOs). Whereas traditional H_0 with use a ladder parallax Cepheid variable stars, inverse relies on absolute BAOs calibrate intrinsic magnitude Ia. find = 67.8 +/- 1.3 km s-1 Mpc-1...
We present two galaxy shape catalogues from the Dark Energy Survey Year 1 data set, covering 1500 square degrees with a median redshift of $0.59$. The cover main fields: Stripe 82, and an area overlapping South Pole Telescope survey region. describe our analysis process in particular measurement using independent shear pipelines, METACALIBRATION IM3SHAPE. catalogue uses Gaussian model innovative internal calibration scheme, was applied to $riz$-bands, yielding 34.8M objects. IM3SHAPE...
We present constraints on extensions of the minimal cosmological models dominated by dark matter and energy, $\Lambda$CDM $w$CDM, using a combined analysis galaxy clustering weak gravitational lensing from first-year data Dark Energy Survey (DES Y1) in combination with external data. consider four energy-dominated scenarios: 1) nonzero curvature $\Omega_k$, 2) number relativistic species $N_{\rm eff}$ different standard value 3.046, 3) time-varying equation-of-state energy described...
ABSTRACT We present a blind time-delay cosmographic analysis for the lens system DES J0408−5354. This is extraordinary presence of two sets multiple images at different redshifts, which provide opportunity to obtain more information cost increased modelling complexity with respect previously analysed systems. perform detailed mass distribution this using three band Hubble Space Telescope imaging. combine measured time delays, line-of-sight central velocity dispersion deflector, and...