- Maternal and Neonatal Healthcare
- Global Maternal and Child Health
- Quantum chaos and dynamical systems
- Public Health in Brazil
- Advanced Thermodynamics and Statistical Mechanics
- Theoretical and Computational Physics
- Healthcare Policy and Management
- Chaos control and synchronization
- Nonlinear Dynamics and Pattern Formation
- Child and Adolescent Health
Universidade Federal de Santa Catarina
2024
Universidade do Estado de Santa Catarina
2016-2024
Max Planck Institute for the Physics of Complex Systems
2016
Resumo Objetivo identificar o perfil de crianças e adolescentes dependentes tecnologia um hospital referência pediátrica do sul país. Método estudo descritivo, com abordagem quantitativa. A coleta dados ocorreu por meio da análise prontuários, entre janeiro 2016 dezembro 2019, armazenados em planilha Microsoft Excel para a estatística descritiva. Um projeto aprovado pelo Comitê Ética sob parecer 5.115.194. Resultados prevaleceu sexo masculino (50,8%), idade pré-escolar (30,8%), proveniente...
Abstract Objective to identify the profile of technology-dependent children and adolescents at a pediatric referral hospital in southern Brazil. Method descriptive study with quantitative approach. Data was collected by analyzing medical records between January 2016 December 2019 stored Microsoft Excel spreadsheet for statistical analysis. The project approved Ethics Committee under protocol number 5.115.194. Results: prevalence male (50.8%), pre-school age (30.8%), from Greater...
We propose new methods to numerically approximate non-attracting sets governing transiently-chaotic systems. Trajectories starting in a vicinity $\Omega$ of these escape finite time $\tau$ and the problem is find initial conditions ${\bf x} \in \Omega$ with increasingly large $\tau= \tau({\bf x})$. search points x}'$ $\tau({\bf x}')>\tau({\bf x})$ {\it domain} $\Omega$. Our first method considers domain size that decreases exponentially $\tau$, an exponent proportional largest Lyapunov...
We consider the covariant Lyapunov vectors (CLV) of a high-dimensional Hamiltonian flow in case long range potential, namely Mean Field (HMF) problem, by studying behavior spectra and Oseledets' splitting principal angles (the mutual orientation between stable unstable subspaces) when phase transition takes place. Motivated several results connecting dynamical properties systems to their exponents vectors, we first find confirmation an explicit sensitivity such quantities transition: our...