Zahra Sajadi

ORCID: 0000-0003-1369-2475
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Groundwater and Isotope Geochemistry
  • Groundwater and Watershed Analysis
  • vaccines and immunoinformatics approaches
  • Geochemistry and Geologic Mapping
  • Environmental Science and Water Management
  • Soil and Environmental Studies
  • Regional Development and Management Studies
  • Karst Systems and Hydrogeology
  • Sinusitis and nasal conditions
  • Water Quality and Pollution Assessment
  • Oral and Maxillofacial Pathology
  • Head and Neck Surgical Oncology
  • Machine Learning in Materials Science
  • Water Quality Monitoring Technologies
  • Computational Drug Discovery Methods
  • Transboundary Water Resource Management

Shahid Chamran University of Ahvaz
2014-2023

Eindhoven University of Technology
2023

Ahvaz Jundishapur University of Medical Sciences
2020

Recent advances in machine learning have proved effective the application of drug discovery by predicting drugs that are likely to interact with a protein target certain disease, leading prioritizing development and re-purposing efforts. State-of-the-art techniques Drug-Target Interaction (DTI) prediction often computationally expensive can only be trained on small specialized datasets. In this paper, we propose novel architecture, called FastDTI, utilizing pretrained transformers graph...

10.7557/18.6788 article EN Proceedings of the Northern Lights Deep Learning Workshop 2023-01-23

Proper water resources management requires recognizing and evaluating the factors that affect quantity quality of resources. The Ilam-Sarvak (Upper Cretaceous) Asmari (Oligocene to Miocene) limestone- dolomite formations in Zagros structural belt have formed a promising karst groundwater horizon. In present study, hydraulic relationship between structures Izeh territory northeast Khuzestan province was investigated using hydrogeochemical isotopic information springs wells. results enabled...

10.3986/ac.v52i1.10687 article EN cc-by Acta Carsologica 2023-09-18

با توجه به ارتباط منابع آب محیط اطراف، شناخت برهمکنش این دو عامل می­تواند دید مناسبی را جهت مدیریت بهینه در اختیار قرار دهد. محدوده گله­دار یکی از دشت­های مهم صنعتی و کشاورزی جنوب استان فارس می­باشد که چه لحاظ کمی کیفی متأثر فرایند می­باشد. تحقیق، عوامل کیفیت زیرزمینی دشت تجزیه تحلیل داده­های چاه­های بهره­برداری انتخابی مورد بررسی گرفت. دیاگرام پایپر، نمودارهای ترکیبی، آنالیز آماری، عاملی نمایه­های اشباع برای شناسایی منشأ شوری تاثیرگذار بر روی آبخوان گله‌دار استفاده شد. دارای تیپ کلروره-سدیک...

10.52547/esrj.10.3.1 article FA Pizhūhish/hā-yi dānish-i zamīn 2019-10-23

Background: The ostiomeatal complex (OMC) is not a separate anatomical structure although it functional unit of structures, including the middle meatus, uncinate process, infundibulum, maxillary sinus ostium, ethmoidal bulla, anterior ethmoid and frontal recess. Concha bullosa pneumatization concha, which one most common variations in turbinate. Methods: This study was conducted using cone-beam computed tomography (CBCT) images 172 patients archives Department Oral Maxillofacial Radiology,...

10.34172/ajdr.2020.19 article EN Avicenna Journal of Dental Research 2020-09-30
Coming Soon ...