Márton Erdélyi

ORCID: 0000-0003-3945-8265
Publications
Citations
Views
---
Saved
---
About
Contact & Profiles
Research Areas
  • Advanced Algebra and Geometry
  • Analytic Number Theory Research
  • Algebraic Geometry and Number Theory
  • Algebraic structures and combinatorial models
  • Coding theory and cryptography
  • Advanced Topics in Algebra
  • Cooperative Communication and Network Coding
  • Mathematical Dynamics and Fractals
  • Error Correcting Code Techniques
  • Finite Group Theory Research
  • graph theory and CDMA systems
  • Communism, Protests, Social Movements
  • Historical Studies and Socio-cultural Analysis
  • Meromorphic and Entire Functions
  • Limits and Structures in Graph Theory
  • Vietnamese History and Culture Studies

Alfréd Rényi Institute of Mathematics
2014-2024

Budapest University of Technology and Economics
2024

Hungarian Academy of Sciences
2016-2017

We construct a perverse sheaf related to the matrix exponential sums investigated by Erdélyi and Tóth [<italic>Matrix Kloosterman sums</italic>, 2021, arXiv:2109.00762]. As this appears as summand of certain tensor product sheaves, we can establish exact structure cohomology attached relating it Springer correspondence using recursion formula Tóth.

10.1090/tran/9149 article EN Transactions of the American Mathematical Society 2024-02-29

Abstract We give optimal bounds for matrix Kloosterman sums modulo prime powers extending earlier work of the first two authors on case moduli. These exponential arise in theory horocyclic flow $$GL_n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:msub> <mml:mi>L</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> </mml:math> .

10.1007/s00209-024-03467-y article EN cc-by Mathematische Zeitschrift 2024-03-14

10.1007/s00209-016-1799-2 article EN Mathematische Zeitschrift 2016-11-07

Abstract Let <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>C</m:mi> </m:math> C be a linear code of length <m:mi>n</m:mi> n and dimension <m:mi>k</m:mi> k over the finite field <m:msub> <m:mrow> <m:mi mathvariant="double-struck">F</m:mi> </m:mrow> <m:msup> <m:mi>q</m:mi> <m:mi>m</m:mi> </m:msup> </m:msub> {{\mathbb{F}}}_{{q}^{m}} . The trace mathvariant="normal">Tr</m:mi> <m:mo>(</m:mo> <m:mo>)</m:mo> {\rm{Tr}}\left(C) is same subfield {{\mathbb{F}}}_{q} obvious upper bound for...

10.1515/jmc-2023-0022 article EN cc-by-nc-nd Journal of Mathematical Cryptology 2024-01-01

10.1016/j.jnt.2015.10.005 article EN publisher-specific-oa Journal of Number Theory 2015-12-12

We study a family of exponential sums that arises in the expanding horospheres on GL n .We prove an explicit version general purity and find optimal bounds for these sums.

10.2140/ant.2024.18.2247 article EN cc-by Algebra & Number Theory 2024-10-21

Let $K$ be a global field of finite characteristic $p\geq2$, and let $E/K$ non-isotrivial elliptic curve. We give an asympotoic formula the number places $\nu$ for which reduction $E$ at is cyclic group. Moreover we determine when Dirichlet density those 0.

10.48550/arxiv.1609.06066 preprint EN other-oa arXiv (Cornell University) 2016-01-01

We study the Schneider-Vigneras functor attaching a module over Iwasawa algebra $\Lambda(N_0)$ to $B$-representation for irreducible modulo $\pi$ principal series of group $\mathrm{GL}_n(F)$ any finite field extension $F|\mathbb{Q}_p$.

10.48550/arxiv.1409.8045 preprint EN other-oa arXiv (Cornell University) 2014-01-01

Let $C$ be a linear code of length $n$ and dimension $k$ over the finite field $\mathbb{F}_{q^m}$. The trace $\mathrm{Tr}(C)$ is same subfield $\mathbb{F}_q$. obvious upper bound for $\mathbb{F}_q$ $mk$. If equality holds, then we say that has maximum dimension. problem finding true codes their duals relevant size public key various code-based cryptographic protocols. $C_{\mathbf{a}}$ denote obtained from multiplier vector $\mathbf{a}\in (\mathbb{F}_{q^m})^n$. In this paper, give lower...

10.48550/arxiv.2309.00687 preprint EN cc-by arXiv (Cornell University) 2023-01-01

We give optimal bounds for matrix Kloosterman sums modulo prime powers extending earlier work of the first two authors on case moduli. These exponential arise in theory horocyclic flow $\mathrm{GL}_n$.

10.48550/arxiv.2209.08021 preprint EN other-oa arXiv (Cornell University) 2022-01-01

We establish the exact structure of cohomology associated to a certain matrix exponential sum investigated in prior work (arXiv:2109.00762) first and last author.

10.48550/arxiv.2210.07133 preprint EN other-oa arXiv (Cornell University) 2022-01-01

We study a family of exponential sums that arises in the horocyclic flow on $\mathrm{GL}_n$. prove an explicit version general purity and find optimal bounds for these sums.

10.48550/arxiv.2109.00762 preprint EN public-domain arXiv (Cornell University) 2021-01-01
Coming Soon ...