Doped Mn Enhanced NiS Electrooxidation Performance of HMF into FDCA at Industrial‐Level Current Density

Nanosheet
DOI: 10.1002/adfm.202214488 Publication Date: 2023-03-13T14:43:43Z
ABSTRACT
Abstract Electrooxidation of 5‐hydroxymethylfurfural (HMF) into 2,5‐furandicarboxylic acid (FDCA) is a highly promising approach for producing value‐added chemicals from biomass. However, developing efficient electrocatalysts HMF oxidation (HMFOR) with high current density in large‐scale productions remains challenge. Herein, it demonstrated that the Mn‐doped NiS nanosheet grown directly on 3D graphite felt (GF) substrates can efficiently perform electrooxidation FDCA at industrial‐level (500 mA cm −2 ) H‐cell. The Mn 0.2 NiS/GF exhibits excellent HMFOR performance selectivity (98.3%), yield (97.6%), faradaic efficiency (94.2%), and robust stability (10 cycles). Especially, production rate up to 4.56 g h −1 be achieved, superior those reported literatures. Furthermore, by scaling electrode area assembling continuous‐flow electrolyzer, 44.32 achieved. activity attributed incorporation material, theoretical calculation results indicate Ni as both adsorption sites oxidation, thereby effectively facilitate electro‐oxidation performance. This work provides strategy potential industrial‐grade large density.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (77)
CITATIONS (119)