Valence Engineering via Manganese‐Doping on Cobalt Nitride Nanoarrays for Efficient Electrochemically Paired Glycerol Valorization and H2 Production

01 natural sciences 0104 chemical sciences
DOI: 10.1002/adfm.202316718 Publication Date: 2024-03-30T09:55:54Z
ABSTRACT
Abstract Integration of more thermodynamically favorable valorization biomass (e.g., glycerol), compared to sluggish oxygen evolution, with H 2 production is great significance for energy‐saving electrosynthesis value‐added chemicals. However, its widespread deployment has been challenged by costly electrocatalysts and large overpotential reaching an industrial‐relevant current density (≥400 mA cm −2 ). Herein, carbon shell‐encapsulated manganese‐doped cobalt nitride nanoarrays immobilizing on nickel foam, denoted Mn‐CoN@C/NF, are crafted via hydrothermal method ammoniation. As a bifunctional electrocatalyst, the Mn‐CoN@C/NF manifests extraordinary activity glycerol oxidation reaction (GOR) ultralow potential 1.37 V (versus RHE) at 400 , in conjunction evolution (HER) low 31 mV 10 . A record high Faradaic efficiency (97.7%) formate GOR delivered 1.35 (vs RHE). Impressively, two‐electrode electrolyzer capitalizing as catalysts reaches 800 1.83 V, delivering electricity‐saving 15.0% pure water splitting. DFT calculations substantiate that Mn species within Mn‐CoN not only optimize hydrogen adsorption kinetics HER, but also elevate Co 3+ active sites’ GOR. This work offers efficient avenue coproduction valuable
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (63)
CITATIONS (34)