Alloying of Cu with Ru Enabling the Relay Catalysis for Reduction of Nitrate to Ammonia

DOI: 10.1002/adma.202202952 Publication Date: 2023-03-05T15:15:35Z
ABSTRACT
AbstractInvolving eight electron transfer process and multiple intermediates of nitrate (NO3−) reduction reaction leads to a sluggish kinetic and low Faradaic efficiency, therefore, it is essential to get an insight into the reaction mechanism to develop highly efficient electrocatalyst. Herein, a series of reduced‐graphene‐oxide‐supported RuCu alloy catalysts (RuxCux/rGO) are fabricated and used for the direct reduction of NO3− to NH3. It is found that the Ru1Cu10/rGO shows the ammonia formation rate of 0.38 mmol cm−2 h−1 (loading 1 mg cm−2) and the ammonia Faradaic efficiency of 98% under an ultralow potential of −0.05 V versus Reversible Hydrogen Electode (RHE), which is comparable to Ru catalyst. The highly efficient activity of Ru1Cu10/rGO can be attributed to the synergetic effect between Ru and Cu sites via a relay catalysis, in which the Cu shows the exclusively efficient activity for the reduction of NO3− to NO2− and Ru exhibits the superior activity for NO2− to NH3. In addition, the doping of Ru into Cu tunes the d‐band center of alloy and effectively modulates the adsorption energy of the NO3− and NO2−, which promotes the direct reduction of NO3− to NH3. This synergetic electrocatalysis strategy opens a new avenue for developing highly efficient multifunctional catalysts.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (301)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....