Poly(dimethylsiloxane)‐block‐PM6 Polymer Donors for High‐Performance and Mechanically Robust Polymer Solar Cells

Strain (injury)
DOI: 10.1002/adma.202300230 Publication Date: 2023-03-17T05:45:33Z
ABSTRACT
High power conversion efficiency (PCE) and stretchability are the dual requirements for wearable application of polymer solar cells (PSCs). However, most efficient photoactive films mechanically brittle. In this work, highly (PCE = 18%) robust (crack-onset strain (COS) PSCs acheived by designing block copolymer (BCP) donors, PM6-b-PDMSx (x 5k, 12k, 19k). these BCP stretchable poly(dimethylsiloxane) (PDMS) blocks covalently linked with PM6 to effectively increase stretchability. The donors increases a longer PDMS block, PM6-b-PDMS19k :L8-BO PSC exhibits high PCE (18%) 9-times higher COS value compared that (COS 2%) PM6:L8-BO-based PSC. PM6:L8-BO:PDMS12k ternary blend shows inferior (5%) (1%) due macrophase separation between active components. intrinsically PSC, significantly greater mechanical stability PCE80% ((80% initial PCE) at 36% strain) than those PM6:L8-BO (PCE80% 12% PM6:L8-BO:PDMS 4% strain). This study suggests an effective design strategy PD achieve PSCs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (74)
CITATIONS (70)