Mechanistic Insight into the Synergy between Platinum Single Atom and Cluster Dual Active Sites Boosting Photocatalytic Hydrogen Evolution

DOI: 10.1002/adma.202300902 Publication Date: 2023-03-28T23:15:47Z
ABSTRACT
AbstractIn the energy transition context, the design and synthesis of high‐performance Pt‐based photocatalysts with low Pt content and ultrahigh atom‐utilization efficiency for hydrogen production are essential. Herein, a facile approach for decorating atomically dispersed Pt cocatalysts having single‐atom (SA) and atomic cluster (C) dual active sites on CdS nanorods (PtSA+C/CdS) via atomic layer deposition is reported. The size of the cocatalyst and the spatial intimacy of the cocatalyst active sites are precisely engineered at the atomic scale. The PtSA+C/CdS photocatalysts show the optimized photocatalytic hydrogen evolution activity, achieving a reaction rate of 80.4 mmol h−1 g−1, which is 1.6‐ and 7.3‐fold higher than those of the PtSA/CdS and PtNP/CdS photocatalysts, respectively. Thorough characterization and theoretical calculations reveal that the enhanced photocatalytic activity is due to a remarkable synergy between SAs and atomic clusters as dual active sites, which are responsible for water adsorption–dissociation and hydrogen desorption, respectively. A similar synergetic effect is found in a representative Pt/TiO2 system, indicating the generality of the strategy. This study demonstrates the significance of the synergy between active sites for enhancing the reaction efficiency, opening a new avenue for the rational design of atomically dispersed photocatalysts with high efficiency.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (67)
CITATIONS (86)