Binary Electrolyte Additive‐Reinforced Interfacial Molecule Adsorption Layer for Ultra‐Stable Zinc Metal Anodes

Dendrite (mathematics) Zinc hydroxide
DOI: 10.1002/adma.202420079 Publication Date: 2025-03-20T09:49:42Z
ABSTRACT
Aqueous zinc ion batteries (AZIBs) face challenges due to the limited interface stability of Zn anode, which includes uncontrolled hydrogen evolution reaction (HER) and excessive dendrite growth. In this study, a natural binary additive composed saponin anisaldehyde is introduced create stable interfacial adsorption layer for protection via reshaping electric double (EDL) structure. Saponin with rich hydroxyl carboxyl groups serves as "anchor points", promoting through intermolecular bonding. Meanwhile, anisaldehyde, unique aldehyde group, enhances HER suppression by preferentially facilitating electrocatalytic coupling H* in EDL, leading formation robust inorganic solid electrolyte interphase that prevents formation, structural during deposition process verified. As result, Zn||Zn symmetric cells present an ultra-long cycling lifespan 3 400 h at 1 mA cm-2 700 10 cm-2. Even current density 20 cm-2, demonstrate reversible operations 450 h. Furthermore, Zn-ion hybrid capacitors exhibit remarkable 100 000 cycles. This work presents simple synergetic strategy enhance anode/electrolyte stability, highlighting its potential anode high-performance AZIBs.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (71)
CITATIONS (0)