Bias‐Switchable Photomultiplication and Photovoltaic Dual‐Mode Near‐Infrared Organic Photodetector

Photocurrent Quantum Efficiency Photodiode Photoactive layer Dual mode
DOI: 10.1002/adma.202500491 Publication Date: 2025-03-12T06:39:55Z
ABSTRACT
Photomultiplication-type organic photodetectors (PM-OPDs) provide for signal amplification, ideal detecting faint light, and simplifying detection systems. However, current designs often suffer from slow response speed elevated dark current. Conversely, photovoltaic-type (PV-OPDs) fast high specific detectivity (D*) but have limited photoresponse. This study presents the synthesis incorporation of a non-fullerene acceptor, BFDO-4F, into active layer to introduce trap states capturing photogenerated electrons. The resulting device exhibits dual-mode characteristic is bias-switchable between PV PM-modes. In PV-mode, OPDs achieve D* 1.92 × 10¹2 Jones time 2.83/4.43 µs. PM-mode, exhibit exceptional external quantum efficiency (EQE) up 3484% 1.13 Jones. An on-chip self-powered module with PV-mode pixels driving PM-mode pixel demonstrated, yielding photocurrent approximately five times higher than reference device. approach paves way developing multifunctional OPDs, suitable various applications.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (62)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....