Uniform Na+ Doping‐Induced Defects in Li‐ and Mn‐Rich Cathodes for High‐Performance Lithium‐Ion Batteries

lithium‐ion batteries Science Q doping Full Papers Li‐ and Mn‐rich cathodes stacking faults 01 natural sciences 7. Clean energy corrosion effect 0104 chemical sciences
DOI: 10.1002/advs.201802114 Publication Date: 2019-05-18T04:11:17Z
ABSTRACT
AbstractThe corrosion of Li‐ and Mn‐rich (LMR) electrode materials occurring at the solid–liquid interface will lead to extra electrolyte consumption and transition metal ions dissolution, causing rapid voltage decay, capacity fading, and detrimental structure transformation. Herein, a novel strategy is introduced to suppress this corrosion by designing an Na+‐doped LMR (Li1.2Ni0.13Co0.13Mn0.54O2) with abundant stacking faults, using sodium dodecyl sulfate as surfactant to ensure the uniform distribution of Na+ in deep grain lattices—not just surface‐gathering or partially coated. The defective structure and deep distribution of Na+ are verified by Raman spectrum and high‐resolution transmission electron microscopy of the as‐prepared electrodes before and after 200 cycles. As a result, the modified LMR material shows a high reversible discharge specific capacity of 221.5 mAh g−1 at 0.5C rate (1C = 200 mA g−1) after 200 cycles, and the capacity retention is as high as 93.1% which is better than that of pristine‐LMR (64.8%). This design of Na+ is uniformly doped and the resultanting induced defective structure provides an effective strategy to enhance electrochemical performance which should be extended to prepare other advanced cathodes for high performance lithium‐ion batteries.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (57)
CITATIONS (104)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....