The Ambiguous Origin of Thermochromism in Molecular Crystals of Dichalcogenides: Chalcogen Bonds versus Dynamic Se−Se/Te−Te Bonds
Dynamic Bonds
Thermochromism
Chalcogen Bond
Molecular Crystal
Structure-Property Relation
DOI:
10.1002/ange.202311044
Publication Date:
2023-09-18T02:43:59Z
AUTHORS (8)
ABSTRACT
AbstractWe report thermochromism in crystals of diphenyl diselenide (dpdSe) and diphenyl ditelluride (dpdTe), which is at variance with the commonly known mechanisms of thermochromism in molecular crystals. Variable temperature neutron diffraction studies indicated no conformational change, tautomerization or phase transition between 100 K and 295 K. High‐pressure crystallography studies indicated no associated piezochromism in dpdSe and dpdTe crystals. The evolution of the crystal structures and their electronic band structure with pressure and temperature reveal the contributions of intramolecular and intermolecular factors towards the origin of thermochromism—especially the intermolecular Se⋅⋅⋅Se and Te⋅⋅⋅Te chalcogen bonds and torsional modes of vibrations around the dynamic Se−Se and Te−Te bonds. Further, a co‐crystal of dpdSe with iodine (dpdSe‐I2) and an alloy crystal of dpdSe and dpdTe implied a predominantly intramolecular origin of the observed thermochromism associated with vibronic coupling.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (64)
CITATIONS (0)
EXTERNAL LINKS
PlumX Metrics
RECOMMENDATIONS
FAIR ASSESSMENT
Coming soon ....
JUPYTER LAB
Coming soon ....