Volatile Imide Additives with Large Dipole and Special Film Formation Kinetics Enable High‐Performance Organic Solar Cells

Imide
DOI: 10.1002/anie.202501816 Publication Date: 2025-03-12T07:25:10Z
ABSTRACT
Large dipole moment additives have strong interactions with the host materials, which can optimize morphology and improve photovoltaic performance of organic solar cells (OSCs). However, these are difficult to remove due their intermolecular interactions, may impair stability. Developing volatile large moments is challenging. Herein, we first report imide that could effectively OSCs through modification. Three N-(o-chlorophenyl)phthalimide (oClPA), N-(m-chlorophenyl)phthalimide (mClPA), N-(p-chlorophenyl)phthalimide (pClPA) were screened investigate effort positional isomerization on molecular configuration interaction. These (ClPAs) larger (2.0664 Debye for oClPA, 4.2361 mClPA, 4.7896 pClPA) compared reported solid additives. In contrast traditional simultaneous nucleation crystal growth, ClPAs induce acceptor nucleate then grow, contributes forming high-quality domains better crystallinity. To our knowledge, this unique film formation kinetics was first. The power conversion efficiency (PCE) based PM6:BTP-eC9 treated pClPA improved from 16.13 % 18.58 %. Additive also performed well in PM6:L8-BO, PM6:Y6, D18:L8-BO systems, a high PCE 19.04 achieved. Our results indicate using unit construct simple effective strategy, halogen atom has effect performance.
SUPPLEMENTAL MATERIAL
Coming soon ....
REFERENCES (53)
CITATIONS (1)